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Abstract

This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric

sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neu-

trinos, as well as a search for νµ → ν̄µ transitions. Differences between neutrino and antineu-

trino oscillations could be a sign of physics beyond the Standard Model, including non-standard

matter interactions or the violation of CPT symmetry. These measurements leverage the sign-

selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos

from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. An-

tineutrino oscillations are observed at |∆m2
atm| =

(
3.36+0.46

−0.40(stat)± 0.06(syst)
)
× 10−3 eV2 and

sin2(2θ̄23) = 0.860+0.11
−0.12(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos

and those measured by MINOS for neutrinos differ by a large enough margin that the chance of

obtaining two values as discrepant as those observed is only 2%, assuming the two measurements

arise from the same underlying mechanism, with the same parameter values. No evidence is seen

for neutrino-to-antineutrino transitions.
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Chapter 1

Introduction

Neutrinos have fascinated scientists throughout their history. Since they interact only via the weak

force, they were long considered undetectable. This very property, which makes them so difficult

to study, also means they can provide unique insights into the behavior of the weak interactions.

Neutrinos have played central roles in some of the most surprising discoveries in particle physics,

such as the violation of parity symmetry. The discovery of neutrino oscillations, and with it neutrino

mass, provided the first glimpses of physics beyond the Standard Model. The relationship between

the neutrino and its antiparticle is a key piece of this unfolding mystery.

This thesis begins with a look at the history of the neutrino in Chapter 2, following it from its

early days as a ‘desperate remedy’ to save the conservation of energy through the key experiments

that determined its existence and properties. The neutrino was at the heart of understanding

the weak force and its unexpected symmetry properties, and thus was a key element in creating the

Standard Model of particle physics. The discovery of neutrino mass in 1998 once again put neutrinos

at the forefront of science, providing the first evidence of physics beyond the Standard Model.

However, despite these successes, many mysteries about the neutrino remain. Among those

mysteries is the relationship between the neutrino and its even more difficult to study partner, the

antineutrino. This thesis looks in depth at the oscillation properties of antineutrinos, which might

once again revolutionize our understanding of fundamental particles. If neutrinos and antineutrinos

oscillate differently, it is a signature of more physics not predicted by the Standard Model. It

could be a sign of new particles, or new interactions with matter, or even a violation of the most

fundamental symmetries of quantum field theory: Lorentz and CPT invariance.

The MINOS experiment, with its intense beam and sign-selecting detectors described in Chapter

3, is uniquely suited to the study of neutrinos and antineutrinos. The detectors are optimized

to study muon tracks, the signature of charged-current muon neutrinos and antineutrinos and the

key feature that allows neutrinos and antineutrinos to be distinguished. Chapter 4 describes in

a general way how the data taken at the two MINOS detectors can be leveraged to measure the

oscillation parameters of antineutrinos in a way robust against mismodelling of the antineutrino flux
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and cross-sections and other systematic uncertainties.

The first measurement of the antineutrino oscillation parameters, described in Chapter 5, was

made with the small (7%) antineutrino component of the NuMI neutrino beam. This measurement

demonstrated MINOS’s ability to identify antineutrino events despite large backgrounds, but its

sensitivity was limited by the properties of the antineutrino flux. In addition to being few in

number, the antineutrinos in the neutrino beam are typically at energies too high to be sensitive to

oscillation parameters close to the ones already measured for neutrinos. However, the limited low-

energy intrinsic antineutrino component of the flux, combined with the ability to select a pure sample

of antineutrinos despite large backgrounds, does provide an opportunity to search for the transitions

of the much more numerous neutrinos, which are known to be disappearing, into antineutrinos.

A precise measurement of the antineutrino oscillation parameters around the atmospheric sector

requires not just more antineutrinos but also requires them to be at the correct energies. Such

a measurement is possible at MINOS thanks to the adaptability of the NuMI beam, which can

be retuned as an antineutrino beam as first proposed by the Caltech MINOS group, producing

a high flux of antineutrinos at an adjustable energy. The first direct, precision measurement of

the antineutrino oscillation parameters in the atmospheric sector was made with data taken while

running in antineutrino mode, and is described in Chapter 6.

The study of antineutrino oscillations, in the tradition of the study of neutrinos, reveals hints of

physics just beyond our reach. As MINOS and its successors accumulate more antineutrino data,

they may once again revolutionize particle physics.
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Chapter 2

Physics of Neutrinos and
Antineutrinos

2.1 Neutrino History

2.1.1 The Beginning of the Neutrino

The neutrino began as a solution to a problem. When radioactivity was first discovered at the end

of the 19th century, the β-decay process was believed to be solely the emission of an electron from

a radioactive nucleus. The electron, then, was expected to emerge at a fixed energy corresponding

to the change in binding energy of the nucleus. However, in 1914 James Chadwick showed that

the energy spectrum of the emitted electron was continuous, not monoenergetic [1]. This apparent

violation of the conservation of energy was understandably troubling to physicists at the time. One

seemingly promising explanation was that the electron was losing energy into the medium containing

the radioactive nuclei, but this hypothesis was disproved by measurements performed in a calorimeter

by Ellis and Wooster in the 1920’s [2]. Some physicists, including the distinguished Neils Bohr, went

as far as suggesting that energy was not conserved in individual decays [3].

Amidst the confusion, Wolfgang Pauli wrote an open letter [4] to a 1930 conference on radioac-

tivity in which he proposed “a desperate remedy to save the exchange theorem of statistics and

the law of conservation of energy.” Pauli’s remedy was to posit the existence of a new particle he

dubbed the ‘neutron’ that was being emitted simultaneously with the electron during β decay. This

new particle needed to be electrically neutral, have spin 1
2 , and have a mass less than 1% of the

proton mass (in order to agree with the end point of the spectrum). Pauli was so hesitant about his

speculation, believing the particle should have been observed if it were being emitted, that he did

not publish his idea until 4 years later. Meanwhile, the modern neutron was discovered by Chadwick

in 1932 [5] (the same Chadwick who measured the β-decay spectrum), but it was immediately clear

that this neutral particle was too heavy to be Pauli’s neutron.
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Belief in the neutrino increased significantly after 1933 when Enrico Fermi included it in the

first successful theory of β-decay, constructed analogous to the earlier theory of electromagnetic

interactions [6]. Fermi’s theory used both Chadwick’s and Pauli’s neutrons: he adopted the proton-

neutron theory of the atom and, to avoid confusion, renamed Pauli’s neutron the neutrino, or little

neutron in Italian. In this theory, the electron and neutrino1 are produced during the transition of

a neutron into a proton,

n→ p+ e− + ν. (2.1)

This theory, along with its generalization by Gamow and Teller in 1936 [9], was able to describe all

β-decay data that had been collected. Pauli’s major concern, that the neutrino should already have

been observed if it existed, was addressed in 1934 when Hans Bethe and Rudolf Peierls showed that

the cross section for the neutrino to interact with a nucleus was billions of times smaller than the

equivalent cross section for the electron [10]. The cross section was so small that for many years it

was considered an undetectable particle.

2.1.2 Early Neutrino Experiments

By the middle of the 1950’s the neutrino had not been detected directly, but there was some in-

direct experimental evidence of its existence. When pion and muon decays were examined using

photographic emulsions, the decay products could be seen continuing on at large angles relative to

the initial parent direction [11]. These observations suggested that an additional particle was being

emitted in the decays but that this particle was not being observed in the emulsion.

The first direct observation of the neutrino was in an experiment performed by Frederick Reines

and Clyde Cowan in 1956 [12]. Their detector consisted of a water target with dissolved CdCl2

sandwiched between tanks of liquid scintillator instrumented with photomultiplier tubes. The an-

tineutrinos were detected via inverse β-decay:

ν̄ + p→ e+ + n. (2.2)

The neutrino detector was set up close to the Savannah River nuclear reactor which provided a large

flux of ‘neutrinos,’ though they are now known to be electron antineutrinos. Neutrino events were

identified by a distinct pattern of activity in the detector. First, the positron would quickly annihilate

with an electron in the water, producing two 511 keV photons moving in opposite directions that

would be picked up in coincidence in the scintillator above and below the target. Then, several

microseconds later, the neutron would capture on the dissolved cadmium, releasing more photons

1This particle is now known to be a ν̄e, but at the time neither antineutrinos nor neutrino flavors had even been
considered. In fact, the first antimatter particle of any kind, the positron, had only just been discovered in that same
year, 1933 [7], after being posited by Dirac in 1928 [8].
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that would be picked up in delayed coincidence with the positron signature. Importantly, they

demonstrated that the observed events were actually neutrinos from the reactor by showing that

the rate of these interactions dropped to nearly nothing when the reactor was turned off. Reines

received the Nobel Prize in 1995 for the discovery.

Shortly thereafter, Ray Davis also performed an experiment near a nuclear reactor to try and

observe the process:

ν̄ + 37Cl→ e− + 37Ar, (2.3)

which had been first proposed by Bruno Pontecorvo in the mid-1940’s [13]. Note the opposite sign on

the electron in Equation 2.3 as opposed to Equation 2.2. Davis found no evidence of this reaction,

demonstrating that while ν̄’s from reactors could produce positrons via inverse beta decay, they

could not produce electrons, demonstrating that neutrinos are distinct from antineutrinos [14]. This

distinction suggested that lepton number (which is opposite in sign for leptons and their antiparticles)

is a conserved quantity.

Two years later, in 1958, Bruno Pontecorvo first suggested that neutrinos might have small

masses and consequently oscillations similar to those seen in the neutral kaon system [15]. However,

Pontecorvo’s oscillations were between neutrinos and antineutrinos – as far as anyone knew at the

time, there was only a single type of neutrino. The first conclusive evidence that there was more than

one flavor of neutrino came in 1962 from an experiment at the Brookhaven AGS performed by Leon

Lederman, Melvin Schwartz, and Jack Steinberger [16]. The neutrinos studied in this experiment

came from the first high-energy neutrino beam. Protons were accelerated to 15 GeV and directed

onto a beryllium target, producing numerous π±. The pions were then allowed to decay in a 21 m

channel where the vast majority produced neutrinos via

π+ → µ+ + ν (2.4)

π− → µ− + ν̄. (2.5)

The alternative process, where e± is produced instead of µ± is suppressed by a factor of 104 (see

explanation in Appendix A.3). At the end of the decay channel was an absorber that stopped all

the charged particles before they reached the aluminum spark chamber behind it. The neutrinos,

of course, passed through the absorber to the detector. If there was only a single neutrino, then

approximately half the interactions in the spark chamber would produce electrons and half would

produce muons:

ν +N →

µ
− +X

e− +X

. (2.6)
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However, if there were two neutrino ‘flavors,’ νµ and νe, only muons would be produced:

νµ +N → µ− +X (2.7)

νµ +N /→ e− +X, (2.8)

which is precisely what was observed at the Brookhaven experiment. Lederman, Schwartz, and

Steinberg received the 1988 Nobel Prize for this discovery, which demonstrated the doublet structure

of the leptons and that particles are arranged into families.

2.1.3 Neutrinos and Symmetry

Around the same time, an important property of the neutrino, and the weak force in general, was

discovered at Columbia. Two theoretical physicists, Tsung-Dao Lee and Chen-Ning Yang, were

trying to understand the decays of two mesons, the τ+ and the θ+, that appeared to be identical

in every regard except that they underwent weak decays into states of opposite parity.2 Lee and

Yang made the revolutionary proposal that these two mesons were one and the same but that in

this particular type of decay, the weak decay, parity was violated [17]. Up until this time, physicists

had taken it as given that parity was a fundamental symmetry of the universe.

Lee and Yang convinced an experimentalist at Columbia, Chien-Shiung Wu, to test their hy-

pothesis experimentally. Wu examined the β-decays of a polarized 60Co source and found a large

asymmetry in the direction of the emitted β’s that could only be attributed to parity-violation in

the weak decay [18]. The asymmetry was so large that it required the parity violation to be max-

imal. Shortly after the Wu experiment, two more experimentalists, Leon Lederman and Richard

Garwin followed another of Lee and Yang’s suggestions and found evidence of parity violation in

the π → µ → e decay chain [19]. The experimental evidence led Lee and Yang to propose the

two-component theory of the neutrino where the neutrino had only one possible helicity state and

the antineutrino had only the opposite helicity [20]. This idea was the first step towards the modern

V −A theory of the weak interaction from the generic theory which included all possible operators

that was proposed by Fermi, Gamow, and Teller in the 1930’s. A year later, in 1958, an experiment

by M. Goldhaber, L. Grodzins, and A. W. Sunyar showed that the neutrino is the left-handed helic-

ity state [21]. The combined evidence of that experiment and a series of other experiments looking

at nuclear recoil [22] and polarization in another type of beta decay [23, 24, 25] cemented the V −A
nature of the theory.

The story of parity violation does not end, there however. Physicists were troubled by the

violation of a symmetry that they had assumed was fundamental. In 1957, Lev Landau proposed

that while parity alone was violated, the combination of parity and charge-conjugation, CP, could

2It is now known that the τ+ and the θ+ are, indeed, the same particle, the K+ meson
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still be a good symmetry [26]. However, the respite was brief. In 1964, James Cronin and Val Fitch

showed that even CP was violated by the decay of kaons [27]. They showed that the K0
L, which at

the time was believed to be the CP-odd eigenstate, did have a small but non-zero branching ratio,

(2.0±0.4)×10−3, for decaying to 2 pions, a CP-even decay channel.3 Unlike parity violation, which

is maximal, the violation of CP is small.

After CP violation was demonstrated, physicists were only left with the combination of CP and

time reversal, CPT . It was shown by several physicists in the 1950’s4 that CPT must be a good

symmetry in order for a theory to be Lorentz-invariant. A consequence is that any search for CPT
violation is also a search for Lorentz violation, since the two come hand-in-hand. Tests of CPT
violation are discussed further in Section 2.5.2.

2.2 Neutrinos in the Standard Model

By the 1960’s, the theory of the neutrino began to take on its modern form. Previous theories of

the weak interaction, like the one written by Fermi in the 1930’s, were “unrenormalizable”: they

produced divergent predictions at anything but the lowest order of perturbation theory. Sheldon

Glashow, Steven Weinberg, and Abdus Salam wrote the first renormalizable theory of the weak

interaction by unifying it with the only known renormalizable theory: the theory of electromagnetic

interactions [32, 33, 34].

Today, neutrinos are included as part of the Standard Model which describes the interactions of

the 17 fundamental particles: the 12 spin- 1
2 fermions and the 5 spin-0 and spin-1 bosons [35]. These

particles are shown in Table 2.1. The Standard Model begins as a locally-gauge invariant theory of

massless fields, using gauge group SU(3)color⊗SU(2)L⊗U(1)Y , unifying the strong force (SU(3)color)

with Glashow, Weinberg, and Salam’s electroweak theory, (SU(2)L ⊗ U(1)Y ). Particle masses are

introduced by the Higgs mechanism of spontaneous symmetry breaking: the initial degrees of freedom

associated with massless fields can be reorganized to produce massive fields thanks to a non-zero

vacuum value of the Higgs field [36].

2.2.1 The Symmetry Group

Since neutrinos interact only via the weak force, I will leave off discussion of the full Standard Model

and focus on the GWS electroweak part of the theory, following notation and procedures adapted

from [37] and [38]. SU(2) is chosen as the symmetry group of the weak interaction since the handed-

ness of the weak interaction can be naturally included by identifying the left-handed fermion fields

as doublets and the right-handed fields as singlets (hence the subscript L). The representations are,

3In the paper, they refer to the K0
L as K0

2 , the CP-odd eigenstate, since they were believed to be equivalent.
4First J. Schwinger in 1951 [28], followed by G. Lüders [29], W. Pauli [30], and J.S. Bell [31].
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Fermions
Name Charge Spin Mass (MeV)

Q
u

ar
k
s

u +2/3 1/2 1.7− 3.3
c +2/3 1/2 (1.27+0.07

−0.09)× 103

t +2/3 1/2 (172± 1.58)× 103

d −1/3 1/2 4.1− 5.8
s −1/3 1/2 101+29

−21

b −1/3 1/2 (4.19+0.18
−0.06)× 103

L
ep

to
n

s
e −1 1/2 0.51± 1.3× 10−8

µ −1 1/2 105.7± 3.8× 10−6

τ −1 1/2 1,776.8± 0.16
νe 0 1/2

< 2× 10−6νµ 0 1/2
ντ 0 1/2

Bosons
Name Charge Spin Mass (GeV) Force
γ 0 1 0 EM
W± ±1 1 80.40± 0.02 Weak
Z0 0 1 91.19± 0.002 Weak
g 0 1 0 Strong

H0 0 0
> 114 with

158− 173 excluded

Table 2.1: Particles of the standard model. The particle masses are as currently measured and are ob-
tained from [35]. The masses of the quarks are ‘current-quark masses,’ determined in a mass-independent
subtraction scheme. The Higgs mass limits come from [35].

for the lepton doublets (E) and singlets (e),

ElL =

νl
l−


L

, elR = lR, where l = {e, µ, τ} , (2.9)

for the quark doublets (Q),

QuL =

u
d


L

, QcL =

c
s


L

, QtL =

t
b


L

(2.10)

and for the quark singlets (q),

quR = uR, qcR = cR, qtR = tR,

qdR = dR, qsR = sR, qbR = bR. (2.11)

Note that there are no right-handed neutrinos since the massless neutrinos in the GWS theory are

maximally parity-violating.

SU(2)L alone, however, does not have a massless gauge boson (i.e. the photon), so in order
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to unify the weak force with the electromagnetic force, the symmetry group must be expanded to

include U(1) as well. The theory needs to be locally invariant under rotations of the combined

symmetry group. A generic, local rotation under SU(2)L ⊗ U(1) of a field ψ requires four vector

gauge fields, three from SU(2), Aα, and one from U(1), Bα. This transformation has the form

ψ → eigτ ·Aαeig
′ 1
2Bαψ, (2.12)

where g and g′ are two different coupling constants corresponding to the two component symmetry

groups and the τ matrices are SU(2) representations.

2.2.2 Gauge Bosons and their Masses

Before addressing the interactions, let us begin by examining the gauge bosons. As written, the

theory now contains four massless gauge bosons, but these bosons are not observed in nature. The

massive bosons which do exist can be introduced via the Higgs mechanism of spontaneous symmetry

breaking [36]. Posit the existence of a Higgs field which is an SU(2) doublet with U(1) charge + 1
2 :

φ(x) =

φ+

φ0

 , (2.13)

where φ+ is a scalar complex field of charged particles and φ0 the same, but for neutral particles.

The free Lagrangian for this field is given by:

L = Dαφ
†Dαφ− V (φ†φ). (2.14)

where the partial derivative ∂α has been replaced by the covariant derivative

Dαφ =

(
∂α + igτ ·Aα + ig′

1

2
Bα

)
φ, (2.15)

which makes the Lagrangian invariant under the transformation given in Equation 2.12. The poten-

tial V (φ†φ) is the specially chosen [39] “mexican hat” potential given by

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 = λ

(
φ†φ− µ2

2λ

)2

− µ4

4λ
, (2.16)

where µ2 and λ are positive constants. Note that the characteristic feature of this potential is that

it reaches a minimum not at zero but when

(φ†φ)vac =
v2

2
, v2 =

µ2

λ
. (2.17)
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From the conservation of charge, we know that φ+ must have a vacuum expectation of 0, and so it

will be neglected from here on. Thus, the vacuum expectation value of the field can be written as

φvac =

 0

v√
2

 , (2.18)

and the complex doublet φ(x) as

φ(x) = ei
1
2τ ·θ(x)

 0

v+H(x)√
2

 =

 0

v+H(x)√
2

 , (2.19)

where θ(x) and H(x) are real functions. In the final step, the leading exponential has been removed

by taking advantage of local gauge invariance to choose a convenient (in this case ‘unitary’) gauge

to work in.

With this vacuum field and choice of gauge, the Lagrangian in Equation 2.14 becomes

L =
1

2
∂αH ∂αH + φ†

(
g

2
τ ·Aα +

g′

2
Bα

)(
g

2
τ ·Aα +

g′

2
Bα
)
φ− V. (2.20)

We can explicitly evaluate this expression using the field in Equation 2.19 and identifying the τ

matrices as 1
2 times the Pauli matrices.5 This gives

φ†φ =
1

2
(v +H)2 (2.21)

V (φ†φ) =
λ

4
(2vH +H2)2 (2.22)

τ ·Aατ ·Aα = Aα ·Aα (2.23)

φ†τ ·AαB
αφ = −1

2
(v +H)2A3

αB
α (2.24)

where only the third component of Aα appears in Equation 2.24 since only σ3 has diagonal elements.

The Lagrangian thus becomes

L =
1

2
∂αH ∂αH +

g2

8
(v +H)2Aα ·Aα +

g′2

8
(v +H)2BαB

α

− g g′

4
(v +H)2A3

αB
α − λ

4
(2vH +H2)2.

(2.25)

Insight can be gained into the physics of the Lagrangian in Equation 2.25 by making the following

5We have chosen the representation σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.



Neutrinos in the Standard Model 11

substitutions:

W (†)
α = W±α =

1√
2

(A1
α ∓ iA2

α) (2.26)

Zα =
g√

g2 + g′2
A3
α −

g′√
g2 + g′2

Bα (2.27)

Aα =
g′√

g2 + g′2
A3
α +

g√
g2 + g′2

Bα (2.28)

where Aα is the combination of A3
α and Bα orthogonal to Zα. Equation 2.25 thus becomes

L =
1

2
∂αH ∂αH +

g2

4
(v +H)2W+

αW
−α +

g2 + g′2

8
(v +H)2ZαZ

α − λ

4
(2vH +H2)2. (2.29)

From this Lagrangian the mass terms can be extracted,

Lmass =
v2

4

[
g2W+

αW
−α + (g2 + g′2)ZαZ

α − 4λH2
]

(2.30)

which gives

m2
W =

v2g2

4
(2.31)

m2
Z =

v
(
g2 + g′2

)
4

(2.32)

m2
A = 0 (2.33)

m2
H = 2v2λ (2.34)

for the masses of the physical bosons, W±, Z0, A0, and H. A0 can be identified as the massless

photon since it has no mass term in Lmass.

2.2.3 Fermion Masses

The fermion masses are somewhat more complicated. A mass term inherently connects left-handed

and right-handed fields but the simplest such terms, for example Lmass = −ml(ElLelR + elRElL),

are forbidden by gauge invariance since they combine doublet and singlet representations. Mass

terms can be introduced via spontaneous symmetry breaking if couplings are included between the

fermions and the Higgs field. This process is demonstrated below in the quark sector. Lepton masses

are addressed later in Section 2.3.1.

The coupling to the Higgs boson, when the vacuum expectation value in Equation 2.19 is taken,

introduces mass terms of the form [38]:

Lmass = −DLM
downDR

(
1 +

H

v

)
+ h.c. (2.35)
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where

DL,R =


dL,R

sL,R

bL,R

 (2.36)

and Mdown is a unitary, not diagonal, matrix. In order to get the physical masses, the matrix Mdown

as well as the corresponding Mup need to be diagonalized:

Mdown = V down
L mdownV down †

R , Mup = V up
L mupV up †

R . (2.37)

where mdown = diag(md,ms,mb) and mup = diag(mu,mc,mt) and V up,down
L,R are unitary transfor-

mation matrices. Using these unitary transformations, mass eigenvector states can be introduced

D′L,R =


d′L,R

s′L,R

b′L,R

 = V down †
L,R DL,R, U ′L,R =


u′L,R

c′L,R

t′L,R

 = V up †
L,R UL,R (2.38)

as well as combined helicity states

U ′ = U ′L + U ′R, D′ = D′L +D′R (2.39)

wich allows standard mass terms for the quarks to be written

Lmass = −
∑

u1=u,c,t

mu1
ū′1u
′
1 −

∑
d1=d,s,b

md1
d̄′1d
′
1. (2.40)

While the primed quark fields correspond to definite masses, they do not have definite trans-

formation properties under the gauge group. Consequently, when the quark fields appear in the

interaction terms (described in the next section), they are actually mixtures of the quarks with

definite masses:

d1L =
∑

d1=d,s,b

Vud1
d′1L (2.41)

s1L =
∑

d1=d,s,b

Vcd1
d′1L (2.42)

b1L =
∑

d1=d,s,b

Vtd1
d′1L, (2.43)

where

V = V up †
L V down

L (2.44)
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is a 3× 3 unitary matrix called the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [40, 41].

The masses of the charged leptons are introduced via the same procedure. However, in the

GWS electroweak theory, neutrinos were massless and appeared only as left-handed particles. Con-

sequently, there are only two mixing matrices, U lep
L,R, rather than the four required for the quarks

and the mixing introduced by the combination of the up and down transformations does not appear.

Of course, if neutrinos do have mass, then mixing among the lepton states analogous to the quarks

would be expected.

2.2.4 Neutrino Interactions

The couplings of the gauge bosons to the fermion fields, and hence the dynamics of the weak

interaction, are uniquely determined by the covariant derivative along with the quantum numbers of

the fields. The most generic form for the covariant derivative of a fermion with SU(2) representation,

T , and a U(1) charge Y is

Dα = ∂α − igAα · T − ig′
1

2
Y Bα, (2.45)

where the T matrices are weak isospin representations (Pauli matrices are a convenient basis) and

Y is called the weak hypercharge (and gives the Y subscript in U(1)Y ). The covariant derivative

can be rewritten in terms of the massive boson fields just developed,

Dα = ∂α−i
g√
2

(W+
α T

++W−α T
−)−i 1√

g2 + g′2
Zα(g2T 3−g′2 1

2
Y )−i gg′√

g2 + g′2
Aα(T 3+

1

2
Y ) (2.46)

where T± = (T 1 ± iT 2) indicate ±1 changes in weak isospin. If the last term is identified as

the standard electromagnetic interaction, then the coefficient must be equal to the charge on the

electron, e,

e =
gg′√
g2 + g′2

(2.47)

and the gauge generator T 3 + 1
2Y must be the electric charge quantum number

Q = T 3 +
1

2
Y (2.48)

where T 3 is the third component of weak isospin and Y is called the weak hypercharge; this expression

is known as the Gell-Mann-Nishijima relation [42, 43]. The constants g and g′ can also be related

to one another by the weak mixing angle, θw, which defines the rotation from the (A3, B) basis to

the (Z,A) basis, Z
A

 =

cos θw − sin θw

sin θw cos θw

A3

B

 , (2.49)
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Particle Helicity Q T 3 Y
u, c, t L +2/3 +1/2 +1/3
d, s, b L −1/3 −1/2 +1/3
e, µ, τ L −1 −1/2 −1

νe, νµ, ντ L 0 +1/2 −1
u, c, t R +2/3 0 +4/3
d, s, b R −1/3 0 −2/3
e, µ, τ R −1 0 −2

νe, νµ, ντ R 0 0 0

Table 2.2: Electroweak charges of standard-model fermions.

which, when compared with Equations 2.27 and 2.28, define the angle as

cos θw =
g√

g2 + g′2
, sin θw =

g′√
g2 + g′2

. (2.50)

With these relations, we can now rewrite the covariant derivative in terms of only the familiar

electron charge, e, and the new weak mixing angle, θw,

Dα = ∂α − i
e√

2 sin θw
(W+

α T
+ +W−α T

−)− i e

sin θw cos θw
Zα(T 3 − sin2 θwQ)− ieAαQ. (2.51)

The relative masses of the W and Z bosons are even determined by this mixing angle

mW

mZ
= cos θw. (2.52)

Next the quantum numbers of the fermion fields must be determined. This can be done using

the relation in Equation 2.48, the already known quantum numbers shown in Table 2.1, and their

weak isospins. The left-handed fermions, the SU(2) doublets, have a weak isospin T = 1
2 with T 3

projections of opposite signs for the components of the doublets. The right-handed SU(2) singlets

all have T = 0 and do not participate in weak interactions. Finally, by requiring that each dou-

blet element has the same value of Y , all of the quantum numbers can be constrained. They are

summarized in Table 2.2.

Now all the pieces are in place to write down the kinetic terms in the Lagrangian of the weak

interaction. For this discussion the masses of the fermions will be ignored – effectively a high-energy

approximation. With this approximation, the kinetic Lagrangian takes the form

Lkin =
∑

l=e,µ,τ

[
ElL(i /D)ElL + elR(i /D)elR

]
+

∑
u1=u,c,t

Qu1L(i /D)Qu1L +
∑

d1=d,s,b

qd1R(i /D)qd1R (2.53)

where the covariant derivative is given by Equation 2.51 with T and Y evaluated for the relevant

fermion representations. By substituting in the covariant derivatives, the physics of the theory will
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�W+

l−

νl q

q′

�Z0

νl

νl

q

q
Figure 2.1: Feynman diagrams at lowest order for charged current (left) and neutral current (right) neutrino-
quark interactions in MINOS.

become more apparent. Lkin becomes

Lkin =
∑

l=e,µ,τ

[
ElL(i/∂)ElL + elR(i/∂)elR

]
+

∑
u1=u,c,t

Qu1L(i/∂)Qu1L +
∑

d1=d,s,b

qd1R(i/∂)qd1R

+
g√
2

[
W+
α J

α
CC +W−α J

α†
CC

]
+

g

cos θw
ZαJ

α
NC + eAαJ

α
EM

(2.54)

separated into free kinetic terms and interactions between the vector bosons and the following

currents

JαCC = ν̄eLγ
αeL + ν̄µLγ

αµL + ν̄τLγ
ατL + ūLγ

αdL + c̄Lγ
αsL + t̄Lγ

αbL (2.55)

JαNC =
∑

l=e,µ,τ

ν̄lLγ
α

(
1

2

)
νlL +

∑
l=e,µ,τ

l̄Lγ
α

(
−1

2

)
lL

+
∑

u1=u,c,t

ū1Lγ
α

(
1

2

)
u1L +

∑
d1=d,s,b

d̄1Lγ
α

(
−1

2

)
d1L

− sin2 θwJ
α
EM

(2.56)

JαEM =
∑

l=e,µ,τ

l̄γα(−1)l +
∑

u1=u,c,t

ū1γ
α

(
2

3

)
u1 +

∑
d1=d,s,b

d̄1γ
α

(
−1

3

)
d1. (2.57)

where CC stands for “charged current,” since the interaction is with the charged vector boson,

and NC stands for “neutral current,” since the interaction is with the neutral weak vector boson.

There are several properties to note in this Lagrangian. First, notice that thanks to the T+ and

T− operators, the charged current only connects particles that differ by 1 in weak isospin (charged

lepton to neutrino, up-type quark to down-type quark). Second, JαEM , which couples to the photon

field Aα, is the standard electromagnetic current and does not differentiate between left- and right-

handed particles. Finally, note that right-handed neutrinos never appear in these currents since they

lack both electromagnetic charge and weak hypercharge, implying that they do not interact via the

electroweak force and hence are called “sterile.”

Even left-handed neutrinos, since they lack an electromagnetic charge, do not appear in the elec-

tromagnetic current and hence only interact via the two weak currents. In the MINOS experiment,
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the neutrinos being studied interact with a nucleus in the detector (usually iron). They can undergo

a charged current interaction by exchanging a W± boson,

νl + q → l− + q′ (2.58)

ν̄l + q → l+ + q′ (2.59)

where q and q′ are up- and down-type quarks in the same family (except for the mixing described in

the previous section), or they can undergo a neutral current interaction by exchanging a Z0 boson,

νl + q → νl + q (2.60)

ν̄l + q → ν̄l + q (2.61)

where the quark does not change. Feynman diagrams for these processes at lowest order are shown

in Figure 2.1.

Most neutrinos in MINOS are at high enough energies that they interact via deep inelastic

scattering, where the neutrino interacts with an individual parton in the nucleus. The matrix

element for this interaction has the form,

|M|2 =

(
4Gf√

2

)2

LαβW
αβ (2.62)

where Lαβ and Wαβ correspond to the leptonic and hadronic vertices in Figure 2.1. The leptonic

vertex can be calculated using the weak charged current and, when summed over initial and final

spins, is a function of the initial and final lepton momenta, k and k′:

Lαβ =
2

mµmν

[
k′αkβ + k′βkα − k · k′gαβ ∓ ikγk′δεγδαβ

]
. (2.63)

Note that the last term encapsulates the parity-violation of the weak force, changing sign between

left-handed neutrinos and right-handed antineutrinos. The hadronic vertex, on the other hand,

cannot be calculated directly but must instead be paramaterized in terms of structure functions

that describe the underlying structure of the nucleon. In the end, the differential neutrino cross

section, as a function of the Bjorken scaling variables x and y,6 takes the form

d2σν(ν̄)N

dxdy
=

G2
fmNEν

π(1 +Q2/m2
W )2

[
xy2F1 +

(
1− y − mNxy

2Eν

)
F2 ± y(1− y/2)xF3

]
, (2.64)

where Fi = Fi(x,Q
2) are the structure functions that relate to the internal structure of the nucleon

and are functions of the kinematical variables. Note that the parity-violating nature of the weak

6x is the fraction of the total nucleon momentum carried by the quark involved in the interaction and y is the
fraction of the momentum of the incident lepton that is transferred to the hadronic system.
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Figure 2.2: The νµ and ν̄µ interaction cross sections as a function of energy as measured in many experiments,
including MINOS. Figure taken from [44].

force is encapsulated in the ±F3 term.

When the neutrino and antineutrino cross sections are measured, the ν̄N cross section turns out

to be significantly lower than the νN cross section, as seen in Figure 2.2. This difference can be

understood qualitatively using the naive parton model [45] of the nucleon where only the on-shell

valence quarks are considered (argument from [46]). In this model the inelastic neutrino-nucleon

scattering becomes elastic neutrino-parton scattering. The V − A nature of the weak interaction

requires that the left-handed neutrinos interact only with left-handed particles and the right-handed

antineutrinos interact only with right-handed particles. By also requiring that angular momentum

is conserved, we find that neutrino-parton (νq) interactions must always have total spin 0 and

antineutrino-parton (ν̄q) interactions must always have total spin 1 (the opposite would be true

for q̄ partons, but in the naive parton model the sea which might contain antiquarks is neglected).

Thus, the d2σνq

d cos θ∗ cross section is isotropic and depends only on the center-of-mass energy while the

d2σν̄q

d cos θ∗ cross section is reduced by a factor of
(

1+cos θ∗

2

)2

(θ∗ is the angle of the outgoing lepton in

the center-of-mass frame). Thus the antineutrino interaction cross section is reduced relative to the

neutrino cross section.

Whatever the flavor of the outgoing quark, it cannot be detected by MINOS since color confine-

ment will cause the quark to immediately hadronize. The energy transferred from the neutrino to

the outgoing quark will cause that quark to begin to separate from the nucleon. However, as the

quark separates the force between it and the nucleon does not diminish, which means as the sepa-

ration increases it eventually becomes more energetically favorable to spontaneously produce more

quarks and gluons out of the vacuum than to allow the original quark to get any further away. This
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behavior prevents color-charged particles from existing individually and is called color confinement.

As the new quarks and gluons that were just produced continue to separate from one another, the

process can repeat itself until the quarks are low enough in energy to form bound meson and baryon

states. It is these bound particles that are observed in the detector. The spontaneous appearance

of quarks and gluons is called hadronization, and the collection of outgoing particles is called the

hadronic shower.7

2.3 Neutrino Oscillations

By the late 1960’s, physicists believed they had the neutrino well in hand. The neutrino was a

massless fermion, it appeared only in a left-handed helicity state, and it interacted solely via the

weak nuclear force that Glashow, Weinberg, and Salam had unified with the electromagnetic force.

In 1970, Ray Davis put the neutrino back in turmoil. Back in the mid 1950’s, Davis searched for

neutrinos at a nuclear reactor using the reaction shown in Equation 2.3, which would be forbidden

by the GWS theory since it violates lepton number. However, this radiochemical process,

νe + 37Cl→ e− + 37Ar (2.65)

would proceed if Davis could expose his chlorine-based detector to a significant source of νe’s. The

fusion reactions in the Sun turned out to be just such a source, and Davis was able to isolate the

solar neutrinos by putting his detector 4, 850 ft deep in the Homestake mine in South Dakota. The

detector itself was a large tank filled with perchloroethylene, a chlorine-rich dry cleaning chemical.

As the neutrinos interacted in the tank, they would produce argon which Davis could isolate and

count.

Working with Davis was theoretical astrophysicist John Bahcall who calculated the expected

flux of neutrinos from the Sun [47]. However, when the data from the detector was examined it

was approximately a third lower than predicted [48]. This discrepancy became known as the ‘solar

neutrino problem,’ and a number of neutrino experiments were built in the following years to solve it.

Where the Homestake experiment used chlorine as the target, the newer experiments used a range

of target nuclei. The different nuclei had different thresholds for interacting with a neutrino, and

hence measured different parts of the solar neutrino energy spectrum. For example, SAGE in the

Soviet Union and GALLEX in Italy used gallium, which has a very low threshold in the hundreds of

keV. The chlorine reaction used in the Homestake experiment has a threshold a little below an MeV

and the Kamiokande8 experiment in Japan used water, which has a threshold of about 8 MeV.

7It is called a hadronic shower since it is hadronic in origin, even though it may have significant electromagnetic
components, for example if a neutral pion is produced and it decays via π0 → 2γ.

8This experiment was actually built primarily to search for proton decay but could also measure solar neutrinos.
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2.1 A Historical Look at the Neutrino 21

Figure 2.4: Zenith angle distributions of µ-like and e-like events in sub-GeV and multi-
GeV data sets in Super-Kamiokande. The hatched region shows the MC expectation in
the absence of oscillations. The bold line is the best fit under the νµ → ντ oscillations
hypothesis. Image obtained from [42].

could undergo a charged-current (CC) interaction:

νe + d→ p + p + e−. (2.36)

In this case the electron was detected through its Cherenkov radiation, which gives infor-

mation about its energy and direction. Second, an incoming neutrino (of any flavor) could

also undergo a neutral-current (NC) reaction:

νl + d→ νl + n + p. (2.37)

In this case the neutron was detected through its capture by a deuteron to form a tritium

nucleus, a process that results in the emission of a gamma ray of roughly 6 MeV. Third, a

neutrino of any flavor could also interact through electron elastic scattering (ES) reaction,

νl + e− → νl + e−, (2.38)

where the neutrino imparts some of its energy to an atomic electron. The NC and ES reac-

tions are sensitive to all neutrino flavors, while the CC reaction is only sensitive to electron

Figure 2.3: Zenith angle distributions from e-like events (upper row) and µ-like events (lower row). The
hatched region shows the expectation without oscillations and the line shows the best νµ → ντ oscillation
fit. Figure taken from [50]. The µ-like samples (lower row) show deficits which depend on zenith angle while
the e-like samples (upper row) show no deficit.

The measurements at different energies helped to vindicate the Bahcall solar model, even before

a solution had been agreed upon. According to the model, the neutrino fluxes depend strongly on

the interior temperature of the Sun, and the different neutrino sources have different dependencies,

ranging from Φν ∝ T−1 for pp neutrinos to Φν ∝ T 24 for 8B neutrinos [49]. In order to account

for the deficit, the Sun would need to be significantly cooler than astronomers believed. However,

the energy distribution measured by the various solar neutrino experiments required, if anything, a

higher core temperature in the Sun. The solar model could not account for both of these observations

simultaneously.

After nearly three decades of struggle, the solar neutrino problem was finally solved by two

experiments: Super-Kamiokande [50] in Japan and the Sudbury Neutrino Observatory (SNO) [51]

in Canada. The Super-Kamiokande detector [52] is a large tank of ultra pure water instrumented with

phototubes to measure the Cherenkov light emitted by the outgoing products of a neutrino-nucleus

interaction. Super-Kamiokande’s revolutionary measurement was made not with solar neutrinos,

but with atmospheric neutrinos produced in the air showers of cosmic rays, primarily νµ’s and νe’s.

Super-Kamiokande saw no deficit in the atmospheric νe’s, but there was a significant deficit in the

νµ’s. Furthermore, the deficit was not uniform: there was a strong dependence on zenith angle

(see Figure 2.3). Neutrinos coming from directly above the detector, i.e. those that had traveled

only a short distance, showed no deficit; however, the neutrinos that came from below and had

traveled a long distance showed a significant deficit. This zenith-angle, or path length, dependence

is a signature of neutrino flavor oscillations, similar to those proposed by Bruno Pontecorvo back
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Figure 2.5: Flux of boron-8 solar neutrinos which are µ or τ flavor vs. flux of electron
neutrinos deduced from the three neutrino reactions in SNO. The diagonal bands show the
total boron-8 flux as predicted by the Solar Standard Model (SSM), while the diagonal solid
bands represents the SNO NC measurement. The intercept of these bands with the axes
represent the ±1σ errors. The bands intersect at the fit values for φe and φµτ , indicating
that the combined flux results are consistent with neutrino flavor transformation with no
distortion in the boron-8 neutrino energy spectrum. Image obtained from [47].

neutrinos. Through the CC reaction, a deficit of νe solar neutrinos consistent with the one

observed by Homestake was seen in SNO. Nevertheless, the total neutrino flux (measured

from the NC and ES reactions) was found to be in perfect agreement with the solar model

predictions. These results provided unambiguous evidence that solar neutrinos transition

to other flavors on their way to the earth, and also vindicated the solar model. Figure 2.5

illustrates these two points by comparing the observed νe and νµ + ντ fluxes derived from

the rate of CC, NC and ES events observed in the SNO data with the predictions of the

Standard Solar Model (SSM) [47].

The preferred mechanism to account for the SNO and Super-Kamiokande observations

is neutrino oscillations. The implications are enormous however, given that neutrino os-

cillations can only be explained with massive neutrinos, as shown next. After reviewing

neutrino oscillations from the theoretical and experimental points of view in the next sec-

tion, we address the questions that this discovery has raised at the end of the chapter.

Figure 2.4: The flux of νµ and ντ vs. the flux of νe from 8B solar neutrinos as measured at SNO. The three
colored bands correspond to different interactions which are sensitive to different mixtures of the flavors.
Notice that the NC band, which is sensitive to the total rate of neutrinos of all flavors, is in excellent
agreement with the standard solar model. All three samples are consistent with the interpretation that a
fraction of the solar νe flux has changed flavor. Figure taken from [53].

in 1968. Since no excess was seen in the νe’s, the νµ’s were presumed to be oscillating to ντ ’s.

The observation of neutrino oscillations had a significant consequence: as shown for the quarks in

Section 2.2.3, in order for neutrinos to oscillate, they need to have mass (this will be demonstrated

specifically for neutrinos in the next section).

While Super-Kamiokande was the first experiment to see neutrino oscillations, it was the SNO

experiment that truly ended the solar neutrino problem in a model-independent way. The experiment

consists of 1 kTon of heavy water, again instrumented with photomultiplier tubes and situated deep

beneath the surface (2,092 m) [54]. Unlike Super-Kamiokande, SNO measured solar neutrinos, like

many of the previous experiments. What made SNO unique was that it could measure three different

neutrino interactions, each of which was sensitive to a different mix of flavors:

1. The charged-current process, sensitive only to electron neutrinos,

νe + d→ e− + 2p (2.66)

2. The neutral-current process, sensitive to all flavors equally,

νx + d→ νx + p+ n (2.67)

3. The electron-scattering process, sensitive to all flavors, but approximately six times more
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sensitive to νe’s,
9

νx + e− → νx + e−. (2.68)

By measuring both the flux of electron neutrinos and of all neutrinos, SNO conclusively demonstrated

that the solar neutrino deficit was, in fact, only a deficit of solar electron neutrinos – the flux of all

neutrino species was in good agreement with the standard solar model. The flux constraints from

the three measurements, and the consistency among them and the standard solar model, are shown

in Figure 2.4. Today, with the vindicated standard solar model and precise measurements of the

solar neutrino spectrum, Bahcall has been able to calculate the temperature of the Sun’s core with

better than 1% precision [55].

2.3.1 Neutrino Masses

All of the physics of neutrino mixing (oscillations) is defined by the neutrino mass matrix, just as

down-quark mixing is defined by the quark mass matrix in Section 2.2.3. Neutrino mass is not part

of the GWS electroweak theory and so neutrino mass terms need to be added to the Lagrangian.

There are numerous theories which can introduce the neutrino mass terms, such as the various

seesaw mechanisms, but they all must eventually produce terms with the same form. Two classes of

mass terms that can be written because neutrinos are neutral particles: Dirac and Majorana. The

two classes differ in the relationship between the neutrino and antineutrino.

2.3.1.1 Dirac Mass

In a Dirac mass term, neutrinos are treated as a 4-component spinor like all other fermions, with

left- and right-handed particles and antiparticles which are distinct from one another:

νL, νR, ν̄L, ν̄R. (2.69)

The mass term in the Lagrangian has the form:

LDmass = −
∑
l′,l

ν̄l′LM
D
l′lνlR + h.c. (2.70)

where MD is a 3 × 3 complex matrix and l′, l run over {e, µ, τ}, the neutrinos that couple to the

weak force (the ‘flavor basis’). This mass term preserves the invariance of the Lagrangian under

9Electron scattering is sensitive to all flavors of neutrino via Z0 exchange, but νe’s can also interact via W−

exchange.
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global lepton number transformations

νlL → eiΛνlL, νlR → eiΛνlR, l→ eiΛl, (2.71)

ν̄lL → e−iΛν̄lL, ν̄lR → e−iΛν̄lR, l̄→ e−iΛ l̄, (2.72)

and consequently conserves total lepton number. In order to determine the physical (i.e. real, single-

valued) masses, the matrix MD must be diagonalized:

MD = U†mV (2.73)

where m is a real, positive diagonal matrix, mij = miδij , with mi > 0. The neutrino fields can be

rewritten in this ‘mass basis,’

νlL =

3∑
i=1

UliνiL (2.74)

νlR =

3∑
i=1

VliνiR (2.75)

where, again, l ∈ {e, µ, τ} and three neutrino mass states have been presumed. When the mass

Lagrangian LDmass is rewritten in the mass basis, it takes on the form of a standard mass term,

LDmass = −
3∑
i=1

miν̄iνi. (2.76)

The unitary matrix, U , is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

[15, 56].

2.3.1.2 Majorana Mass

Unlike a Dirac fermion, a Majorana fermion only has two components: the charge-conjugate of the

left-handed particle is the right-handed particle. Put another way, the particle is its own antiparticle.

νL, ν̄R ≡ (νL)c = Cν̄TL (2.77)

where C is the charge-conjugation operator. Neutrinos are the only Standard Model fermions that

can be Majorana particles since all other fermions have electric charges which distinguish the particles

from the antiparticles.

By definition, a Lagrangian mass term is a Lorentz-invariant product of the left- and right-handed

components of a field. Thus, it must be demonstrated that (νL)c is, in fact, a right-handed field.
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The handedness of a field is defined by its behavior under multiplication by γ5:

γ5ψL = −ψL, γ5ψR = ψR. (2.78)

Let us, therefore, examine the behavior of the field in question, (νL)c,

γ5(νL)c = γ5Cν̄
T
L (2.79)

=
(
ν̄LC

T γT5
)T

(2.80)

Using CT = −C, CγT5 C
−1 = γ5, the expression becomes

γ5(νL)c = −
(
ν̄LCγ

T
5 C
−1C

)T
(2.81)

= − (ν̄Lγ5C)
T

(2.82)

Finally, using the relation ν̄Lγ5 = νL,

γ5(νL)c = − (νLC)
T

(2.83)

= CνTL (2.84)

= (νL)c (2.85)

showing that (νL)c behaves like the right-handed component of a field and can be used to construct

a mass term. That term has the form:

LMmass = −1

2

∑
l′,l

ν̄l′LM
M
l′l (νlL)c + h.c. (2.86)

or, in matrix form,

LMmass = −1

2
ν̄LM

M (νL)c + h.c., (2.87)

where MM is a complex matrix and νTL = (νeL νµL ντL). Unlike the Dirac mass term, this term

is not invariant under global gauge transformations. While the left- and right-handed Dirac fields

transformed in the same way (Equation 2.71), the relationship between the left- and right-handed

Majorana neutrinos requires that

νlL → eiΛνlL, νlR = (νlL)
c → e−iΛ (νlL)

c
, (2.88)

and Equation 2.86 is not invariant under this transformation. Consequently, a theory with Majorana

neutrinos does not conserve total lepton number.
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The relationship between the left- and right-handed fields in this mass term provide a constraint

on the form of MM :

ν̄LM
M (νL)c = ν̄LM

MCν̄TL (2.89)

= −ν̄L
(
MM

)T
CT νTL (2.90)

= ν̄L
(
MM

)T
CνTL (2.91)

using the anticommuntation properties of fermion fields. This implies that

MM =
(
MM

)T
(2.92)

or that MM is symmetric. Thus, when the matrix is diagonalized to find the physical neutrino

masses, only one unitary matrix, U , is needed:

MM = U mUT (2.93)

where, again, U is a unitary matrix and mij = miδij , with mi > 0. Substituting into the Lagrangian,

LMmass = −1

2
ν̄LU mUTCνTL + h.c. (2.94)

= −1

2
U†νLm

(
U†νL

)c − 1

2
(U†νL)

c
mU†νL (2.95)

= −1

2
ν̄M mνM (2.96)

where

νM = U†νL +
(
U†νL

)c
=


ν1

ν2

ν3

 , (2.97)

once again producing the canonical mass term by transforming the fields into the mass basis (compare

to Equation 2.76). It is clear from Equation 2.97 that

(
νM
)c

= νM , (2.98)

and thus that

νci = νi. (2.99)

This relation is known as the Majorana condition, and it states that in the mass basis the neutrino

and antineutrino are the same particle.

As in the Dirac case (Equation 2.74), the mass and flavor bases are related to one another by
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Figure 2.5: Feynman diagrams for 2ν (left) and 0ν (right) double beta decay. Note, the 0νββ is only possible
if the same particle can act as νe and ν̄e.

the mixing matrix U

νL = UνML or νlL =

3∑
i=1

UliνiL. (2.100)

It is significant to note that whether neutrinos are Dirac or Majorana, in the end there are still

three neutrinos of definite mass m1,m2,m3 which are related to the three neutrinos with definite

SU(2)L ⊗ U(1)Y transformation properties (the flavor neutrinos, νe, νµ, ντ ) by the PMNS mixing

matrix U . In fact, in either case only left-handed neutrinos and right-handed antineutrinos are ever

observed since only those states couple to the electroweak force.

The only known way, experimentally, to distinguish between Dirac and Majorana neutrinos is to

search for the rare neutrinoless double beta decay process (0νββ). In a typical double beta decay,

two neutrons transition to two protons by emitting two antineutrinos and two electrons (via two

W−’s),

2n→ 2p+ + 2e− + 2ν̄e. (2.101)

However, if the neutrino and antineutrino are the same particle, then instead of releasing two ν̄e’s,

one virtual ν̄e could be emitted and then absorbed as a νe all within the decay (since the emission

of a ν̄e and absorption of a νe are equivalent processes), leaving

2n→ 2p+ + 2e−. (2.102)

Note that in this process, total lepton number is violated by 2, which is forbidden if neutrinos are

Dirac particles but is allowed if neutrinos are Majorana particles. Consequently, the observation

of neutrinoless double beta decay is a sensitive test of lepton number conservation and hence the

nature of the relationship between the neutrino and antineutrino.

2.3.2 Oscillations in Vacuum

Whatever the source of neutrino mass, and whatever type of particle the neutrino is, neutrino mixing

takes on a common form. The neutrino flavor eigenstates are related to the neutrino mass eigenstates
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via the unitary PMNS matrix (Equations 2.74 or 2.100). A weak interaction in nature will produce

one of the flavor states, here denoted | να〉, since these are the states which couple to the W± and

Z0 bosons. Let us examine the evolution of this state in time.

The Schrödinger equation tells us that the time evolution of the neutrino state will be given by

|να(t)〉 = e−iHt |να(0)〉 (2.103)

where H is the Hamiltonian and |να(0)〉 =|να〉 is the state of the neutrino at time t = 0. Since |να〉
is not an eigenstate of the Hamiltonian, this expression is difficult to evaluate. However, the mass

basis states, |νi〉, are eigenstates,

H |νi〉 = Ei |νi〉 (2.104)

with eigenvalues Ei =
√
p2 +m2

i . Taking advantage of this relation and the mixing relationship

(Equation 2.74) developed above, the time evolution of the neutrino state (Equation 2.103) becomes

|να(t)〉 =

N∑
i=1

e−i EitU∗αi |νi〉 (2.105)

where N is the number of neutrino mass states. However, when the neutrino state |να(t)〉 interacts

again (the only way to observe the new state), it will be as a flavor eigenstate, not a mass eigenstate

|νi〉. So, thanks to U ’s unitarity, by inverting Equation 2.74 we find

|να(t)〉 =
∑
β

N∑
i=1

e−i EitUβiU
∗
αi |νβ〉 (2.106)

where β sums over the flavor states.

The probability of observing a neutrino flavor state, | νβ〉, starting from state | να〉 after time t

has elapsed is given by the square of the amplitude:

Pt(να → νβ) = |〈νβ |να(t)〉|2

=

∣∣∣∣∣
N∑
i=1

e−i EitUβiU
∗
αi

∣∣∣∣∣
2

=

N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−i(Ei−Ej)t. (2.107)

Since neutrinos have very little mass, they are highly relativistic and their energy can be approx-

imated as Ei ≈ p +
m2
i

2p , and the time traveled can be converted to a distance, L (using natural

units where c = 1). Notice that p is the same for all neutrino mass states i since they are produced
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coherently. The probability thus becomes

PL(να → νβ) =

N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−i L2E∆m2

ij (2.108)

where ∆m2
ij = m2

i −m2
j and, given the small size of the absolute neutrino mass, the momentum p

has been further approximated as E, the energy of the original neutrino state |να〉. The expression

can be written more conveniently as

PL(να → νβ) = δαβ − 4
∑
i>j

<(UβiU
∗
βjU

∗
αiUαj) sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

=(UβiU
∗
βjU

∗
αiUαj) sin

(
∆m2

ijL

2E

)
.

(2.109)

Some properties of neutrino oscillations are apparent directly from Equation 2.109. Oscillations

are only possible if neutrinos are massive, and only if the mass eigenstates νi have different masses.

Otherwise, the sine terms go to zero and PL(να → νβ) = δαβ . In fact, it is the sine terms that give

the neutrino flavor transitions the name “oscillations.”

It is interesting to examine some of the symmetry properties of this expression. Note that

swapping α and β (time-reversal) is equivalent to swapping U and U∗,

PL(να → νβ ;U) = PL(νβ → να;U∗), (2.110)

while CPT -invariance requires

PL(ν̄α → ν̄β) = PL(νβ → να). (2.111)

Putting these together we find

PL(να → νβ ;U) = PL(ν̄α → ν̄β ;U∗). (2.112)

Thus, if U = U∗ (U is real) the transition probability is CP-invariant and PL(να → νβ) = PL(ν̄α →
ν̄β). Conversely, if it is observed that PL(να → νβ) 6= PL(ν̄α → ν̄β), then that is evidence that CP
is violated.

2.3.3 The Mixing Matrix

The previous discussion of neutrino oscillations is generic – it does not depend on a specific number

of neutrinos. The Standard Model predicts three neutrinos corresponding to the three families of
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Fig. 1.13. Measurements of the hadron production cross-section around the Z resonance. The curves indicate the predicted cross-section for two,
three and four neutrino species with SM couplings and negligible mass.

Assuming that the only invisible Z decays are to neutrinos coupling according to SM expectations, the number of
light neutrino generations, N!, can then be determined by comparing the measured R0

inv with the SM prediction for
"!!/"!!:

R0
inv = N!

(
"!!

"!!

)

SM
. (1.50)

The strong dependence of the hadronic peak cross-section on N! is illustrated in Fig. 1.13. The precision ultimately
achieved in these measurements allows tight limits to be placed on the possible contribution of any invisible Z decays
originating from sources other than the three known light neutrino species.

1.5.3. Asymmetry and polarisation
Additional observables are introduced to describe the cos # dependent terms in Eq. (1.34) as well as effects related

to the helicities of the fermions in either the initial or final state. These observables quantify the parity violation of
the neutral current, and therefore differentiate the vector- and axial-vector couplings of the Z. Their measurement
determines sin2 #f

eff .
Since the right- and left-handed couplings of the Z to fermions are unequal, Z bosons can be expected to exhibit a net

polarisation along the beam axis even when the colliding electrons and positrons which produce them are unpolarised.
Similarly, when such a polarised Z decays, parity non-conservation implies not only that the resulting fermions will
have net helicity, but that their angular distribution will also be forward–backward asymmetric.

When measuring the properties of the Z boson, the energy-dependent interference between the Z and the purely
vector coupling of the photon must also be taken into account. This interference leads to an additional asymmetry
component which changes sign across the Z-pole.

Considering the Z exchange diagrams and real couplings only,2 to simplify the discussion, the differential cross-
sections specific to each initial- and final-state fermion helicity are:

d$Ll

dcos#
∝ g2

Leg
2
Lf(1 + cos#)2, (1.51)

d$Rr

dcos#
∝ g2

Reg
2
Rf(1 + cos#)2, (1.52)

2 As in the previous section, the effects of radiative corrections, and mass effects, including the imaginary parts of couplings, are taken into
account in the analysis. They, as well as the small differences between helicity and chirality, are neglected here to allow a clearer view of the helicity
structure. It is likewise assumed that the magnitude of the beam polarisation is equal in the two helicity states.

Figure 2.6: Measurement of the hadron production cross section around the Z0 mass resonance at LEP. The
curves show the prediction for this cross section with 2, 3, and 4 light active neutrino species. The results
constrain Nν to 2.984± 0.008. Figure taken from [57].

quarks and charged leptons. The number of active neutrinos (specifically the number of neutrinos

that couple to the Z0 boson) was measured with high precision by the Large Electron-Positron (LEP)

collider at CERN in the 1990’s. Several LEP experiments (ALEPH, DELPHI, L3, OPAL) made

measurements of the hadron production cross section around the Z0 mass resonance and compared

it with predictions assuming differing numbers of light neutrinos (see Figure 2.6). The combined

results constrain Nν to 2.984± 0.008 [35, 57].

The PMNS mixing matrix can be written in a standard form with three neutrinos. In general,

an N ×N unitary matrix can be parameterized by

nθ =
1

2
N(N − 1) = 3 (for N = 3) (2.113)

angles and

nφ =
1

2
N(N + 1) = 6 (for N = 3) (2.114)

complex phases. In practice, not all of these phases will remain. The fermion fields can take on

arbitrary phases and these phases can be chosen to eliminate phases in the mixing matrix.

Take, for example, the leptonic part of the charged current from Equation 2.55, which can be

rewritten in terms of the neutrino mass states:

Jα†CC =
∑

l=e,µ,τ

l̄Lγ
ανlL =

N∑
i=1

l̄Lγ
αUliνiL. (2.115)
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For Dirac neutrinos, each neutrino and charged lepton field can take on an arbitrary phase and still

be physically equivalent:

νiL → ν′iL = eiαiνiL, lL → l′L = eiβi lL. (2.116)

The charged current in Equation 2.115 will remain unchanged if the mixing matrix, U , is also

transformed using the phase matrix S

U → U ′ = S(β)US†(α) (2.117)

where

S†(α) = e−iαN


e−i(α1−αN )

...

1

 , S(β) = eiαN


ei(β1−αN )

...

ei(βN−αN )

 . (2.118)

Note, the overall phase αN is pulled out of both S matrices to ensure the current does not pick up

an overall phase. This leaves N + (N − 1) free phases which can be chosen to eliminate the phases

in the PMNS matrix, U . The final number of phases, assuming three Dirac neutrinos, becomes,

nDφ =
N(N + 1)

2
− (2N − 1) =

(N − 1)(N − 2)

2
= 1 (for N = 3). (2.119)

So the mixing of Dirac neutrinos is parameterized by 3 angles and 1 complex phase.

The Majorana fields can also taken on arbitrary phases, like the Dirac fields. However, the

Majorana condition (Equation 2.99) already constrains the values of the αi neutrino phases, leaving

only the charged lepton phases free. Thus, the Majorana mixing matrix, UM , will include two

phases, α1 and α2, in addition to the mixing matrix U from the Dirac case

UM = U


α1 0 0

0 α2 0

0 0 1

 (2.120)

and only S(β) enters the transformation of UM ,

UM → UM
′

= S(β)UM (2.121)

and only N free phases can be chosen. Thus, for three Majorana neutrinos,

nMφ =
N(N + 1)

2
−N =

N(N − 1)

2
= 3, (2.122)

and the mixing of Majorana neutrinos is paramterized by 3 angles and 3 complex phases, one that
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was also in the Dirac matrix as well as the two constrained by the Majorana condition.

It is standard to identify each angle as an Euler rotation among two of the neutrino mass states.

Therefore, θ12 would be a rotation among |ν1〉 and |ν2〉 that leaves the |ν3〉 alone:

|ν1〉′ = cos θ12 |ν1〉+ sin θ12 |ν2〉 (2.123)

|ν2〉′ = − sin θ12 |ν1〉+ cos θ12 |ν2〉 (2.124)

|ν3〉′ =|ν3〉 (2.125)

or, in Matrix form,

|ν〉′ = U (12) |ν〉 =


c12 s12 0

−s12 c12 0

0 0 1

 |ν〉 (2.126)

where s12 = sin θ12 and c12 = cos θ12, and equivalently for θ13 and θ23. The complex phase, δ, that

occurs for both Dirac and Majorana neutrinos is included with the off-diagonal terms in the θ13

rotation:

U (13) =


c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13

 . (2.127)

All told, the Dirac PMNS matrix takes the forms

|ν〉′ = U |ν〉 (2.128)

= U (12)U (13)U (23) |ν〉 (2.129)

=


c12 s12 0

−s12 c12 0

0 0 1




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




1 0 0

0 c23 s23

0 −s23 c23

 |ν〉 (2.130)

=


c13c12 c13s12 s13e

−iδ

−c23s12 − s23c12s13e
iδ c23c12 − s23s12s13e

iδ c13s23

s23s12 − c23c12s13e
iδ −s23c12 − c23s12s13e

iδ c13s23

 |ν〉. (2.131)

The mixing matrix for Majorana neutrinos takes on the same general form, but with the two
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additional phases included in Equation 2.120:

|ν〉′ = UM |ν〉 (2.132)

= U (12)U (13)U (23)


α1 0 0

0 α2 0

0 0 1

 |ν〉. (2.133)

2.3.4 Two Neutrino Mixing

The oscillation probability among neutrino species, using the probability from Equation 2.109 and

the mixing matrix from Equation 2.131, will generally be quite complicated when all three flavors are

considered. If, however, the mixing can be approximated as between only two species, the probability

can be simplified considerably. Let us consider transitions between να and νβ which are mixtures

of neutrino mass state ν1 and ν2. With only two neutrinos, the mixing can be parameterized by

one angle and no complex phases (neglecting diagonal Majorana phases which do not appear in the

oscillation probabilities, see Equations 2.113, 2.119, 2.122). Thus, in Equation 2.109, there will be

only one term in the sum i > j (i = 2 and j = 1) and since the matrix U is real, U = U∗ and the

imaginary term vanishes, leaving,

PL(να → νβ) = δαβ − 4Uα2Uα1Uβ2Uβ1 sin2

(
∆m2

21L

4E

)
. (2.134)

Substituting in the two-flavor mixing matrix,

U =

 cos θ12 sin θ12

− sin θ12 cos θ12

 , (2.135)

the probability becomes,

PL(να → να) = 1− sin2 2θ12 sin2

(
∆m2

21L

4E

)
(2.136)

PL(να → νβ) = sin2 2θ12 sin2

(
∆m2

21L

4E

)
, (2.137)

using the trigonometric identity 2 sin θ cos θ = sin 2θ. Note that PL(να → να) + PL(να → νβ) = 1,

consistent with the conservation of probability.

Since U = U∗ in the two-neutrino scenario, the time-reversal (Equation 2.110) and CP inversion

(Equation 2.112) expressions require:

PL(να → νβ) = PL(ν̄α → ν̄β) = PL(νβ → να) = PL(ν̄β → ν̄α). (2.138)
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Since these symmetry expressions assume only CPT conservation and the expressions derived for PL,

any violation of them is evidence that either CPT is not conserved or that the oscillation probability

needs to be modified in a way that is different for neutrinos and antineutrinos.

In many experimental situations, including the one discussed in this thesis, the two-neutrino

approximation is a good one. The experimental setup here is looking at muon neutrino or an-

tineutrino survival at distances and energies corresponding to the atmospheric oscillation length. In

practice, the approximation is actually two approximations: that the oscillations driven by the solar

mass-splitting are unimportant and that only one mixing angle is relevant.

The first approximation is a good one since the measured neutrino mass-splittings (discussed

later in Section 2.3.6) differ by more than an order of magnitude, giving them dramatically dif-

ferent oscillation lengths. The full three-neutrino νµ survival probability has two terms, one pro-

portional to sin2
(

∆m2
atmL

4E

)
and one proportional to sin2

(
∆m2

solL
4E

)
. If L and E are chosen such

that sin2
(

∆m2
atmL

4E

)
≈ 1, then because ∆m2

atm/∆m
2
sol ≈ 30, sin2

(
∆m2

solL
4E

)
≈ 0.003 and because the

atmospheric mixing angle is large, the solar oscillations are negligible, independent of the size of the

solar mixing angle.

The second approximation says, effectively, that only θ23 drives the mixing and that θ13 is not rel-

evant. The full three-flavor coefficient to the ∆m2
atm term is sin2(2θ23) cos2(θ13)+sin2(2θ13) cos2(θ23).

However, no experiment to date has yet been able to distinguish sin2(2θ23) from 1 or sin2(2θ13) from

0, so this term is effectively sin2(2θ23), corresponding to the two-neutrino approximation with mass

states 2 and 3.

2.3.5 Matter Effects

The transitions among neutrino flavors depends only on the neutrino mass matrix when the neutrinos

are travelling through vacuum. When the neutrinos are travelling through matter the effect of

coherent forward scattering must be taken into account, as first observed by Lincoln Wolfenstein

in 1978 [58]. Electron neutrinos can interact with electrons in the medium via charged-current

interactions and all neutrinos can interact with electrons, protons, and neutrons via neutral-current

interactions. However, this NC matter-effect, like all NC interactions, is e-µ-τ symmetric, meaning it

only adds terms proportional to the identity, which cannot be observed in an oscillation experiment

since they only introduce an overall phase to the neutrino state, not a phase difference between

flavor components.

The effect of the charged-current scattering can be demonstrated in the simpler case of two-

neutrino oscillations. Begin by writing the Schödinger equation for the time evolution of the neutrino

state in the mass basis

i
d

dt

ν1

ν2

 = Hvac

ν1

ν2

 (2.139)
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where, for the mass eigenstates, the Hamiltonian is easily determined

Hvac =

E1 0

0 E2

 ≈ p+

m2
1/2E 0

0 m2
2/2E

 (2.140)

where p is the neutrino momentum, E is the neutrino energy, and m1, m2 are the masses of ν1, ν2

as was done in Section 2.3.2. Now, this expression can be transformed into the weak basis using the

mixing matrix, U , νe
νβ

 = U

ν1

ν2

 (2.141)

where one of the weak states has been assumed to be the electron neutrino. Substituting and

rearranging, Equation 2.139 becomes

i
d

dt

νe
νβ

 = UHvacU
†

νe
νβ

 . (2.142)

The charged-current scattering of electron neutrinos off electrons in the medium adds an addi-

tional potential

V em = ±
√

2GFne (2.143)

where GF is the Fermi constant, ne is the density of electrons in the medium, and the term changes

from positive to negative for antineutrinos. Since the interaction leaves the neutrino flavor unchanged

and only effects νe’s, it only appears in the e − e term of the Hamiltonian in the weak basis. The

total effective Hamiltonian then becomes

H = UHvacU
† +HCC =

∆m2

2E

sin2 θ + 2E
∆m2V

e
m − sin θ cos θ

− sin θ cos θ cos2 θ

 , (2.144)

where terms proportional to the identity have been removed. This modified Hamiltonian can then

be re-diagonalized to give a new mixing angle θm and energy eigenvalues Em1,2,

fm =

√
sin2 2θ +

(
cos 2θ − 2E

∆m2
V em

)2

(2.145)

Em1,2 = ±∆m2

4E
fm (2.146)

cos 2θm =
1

fm

(
cos 2θ − ∆m2

2E
V em

)
(2.147)

sin 2θm =
1

fm
sin 2θ. (2.148)

In the end, the oscillation formula takes the same form, but with additional fm factors to account
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for the matter effects,

P (νe → νe) = 1− sin2 2θ

f2
m

sin2

(
∆m2fmL

4E

)
. (2.149)

When multiplied out, the term ∆m2fm will have a term of the form
(
∆m2 cos 2θ − 2EV em

)2
. Since

the matter effects add or subtract from ∆m2 directly, not its absolute value, the sign of ∆m2 can

be determined if matter effects can be observed.

Notice that neutrino oscillations in matter can be maximal, regardless of the value of the actual

mixing angle, given the right electron density. When

ne =
∆m2 cos 2θ

2
√

2GFE
, (2.150)

sin2 2θm = 1, independent of the value of θ. When the electron density is non-constant, as happens

in the Sun, another resonance condition can occur called the MSW effect, after Stanislav Mikheyev

and Alexei Smirnov, who first calculated the resonance, and Lincoln Wolfenstein from above [59]. In

the Sun, the electron density decreases exponentially from the center, where neutrinos are produced,

out to the edge. As the neutrinos travel along this density curve, they will reach a point where the

matter effects become resonant, causing all the neutrinos to oscillate maximally into one of the

eigenstates of the Hamiltonian. After undergoing this adiabatic transition, the solar neutrinos are

in an effectively stationary state and their flavor content remains approximately unchanged for the

rest of their trip to a detector on Earth.

2.3.6 Measurements

After the initial discovery of neutrino oscillations in 1998 by Super-Kamiokande, new experiments

began to come online which could make precise measurements of neutrino mixing. There are six

parameters that can be measured in neutrino oscillation experiments: θ12,∆m
2
12, θ23,∆m

2
23, θ13, δ.

The first four parameters have been measured10 with precision, an upper limit has been placed on

the fifth, and the sixth is not yet constrained.

The earliest solar neutrino experiments, the Homestake experiment discussed above [48] and the

Kamiokande water Cherenkov experiment in Japan [60], were sensitive only to the highest energy

solar neutrinos coming from the decay of 8B,

8B→ 8Be∗ + e+ + νe(≈ 10 MeV), (2.151)

but these neutrinos are only a tiny fraction of the solar neutrino flux and their rate is model-

dependent. They observed solar neutrino rates that were 28%± 5% and 46%± 8%, respectively, of

those predicted by the standard solar model. The later radiochemical experiments, SAGE in Soviet

10With the notable exception of the sign of ∆m2
23, which remains unknown.
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Union [61] and GALLEX-GNO in Italy [62], used the reaction

νe + 71Ga→ e− + 71Ge (2.152)

to observe solar neutrinos, which has a significantly lower threshold of 0.223 MeV. Consequently,

these experiments were sensitive to the pp neutrinos produced in the beginning of the main solar

fusion reaction

p+ p→ d+ e+ + νe(≈ 0.3 MeV), (2.153)

which are lower in energy but make up the bulk of the solar neutrino flux. Their rate, unlike that of

the 8B neutrinos, is mostly model-independent. The standard solar model predicts a rate of 128 SNU

on Gallium but Sage and Gallex measured rates of 70.8+6.5
−6.1 SNU and 77.5+7.5

−7.8 SNU respectively.11

However, even when the results from all these experiments were combined, the oscillation parameters

could not be constrained to a single region of ∆m2
12-θ12 parameter space (the 12 sector is believed

to be responsible for transitions from νe to νµ and ντ ). The isolation of a single pair of oscillation

parameters came when the results of the SNO experiment were released [63], isolating the Large

Mixing Angle (LMA) solution with MSW matter effects. The combined best oscillation fit to all

solar neutrino data, circa 2005, gives [64]

∆m2
12 =

(
6.5+4.4
−2.3

)
× 10−5 eV2, tan2 θ12 = 0.45+0.09

−0.08. (2.154)

Additionally, by measuring the sign of the MSW effect, it was established that m2 > m1 [35].

Final confirmation of neutrino oscillations in the ‘solar sector’ (where the 12 oscillations are

dominant) came from the KamLAND experiment. KamLAND is a ν̄e detector situated in the

Kamioka mine in Japan which uses 1 kTon of liquid scintillator surrounded by non-scintillating

buffer oil and is instrumented with approximately 1,900 phototubes. It detects neutrinos via inverse

beta decay with the prompt-delayed double coincidence used in the earliest neutrino experiments.

It is exposed to a flux of ν̄e’s from 55 commercial nuclear reactors, which are an average of 180 km

from the detector. KamLAND saw significant ν̄e disappearance [65] which, when fit for oscillations,

gave

∆m2
12 =

(
7.66+0.22

−0.20

)
× 10−5 eV2, tan2 θ12 = 0.52+0.16

−0.10 (2.155)

which are clearly consistent with the parameters measured by the solar experiments in Equa-

tion 2.154. The contours from KamLAND and the combined solar experiments can be seen in

Figure 2.7. This independent measurement of similar oscillation parameters in a completely different

experimental set up (ν̄e vs. νe, different energy and oscillation length, different detector technology)

significantly increased confidence in neutrino oscillations. When the solar and KamLAND results

11SNU denotes a Solar Neutrino Unit which is defined as 10−36 events/atom/second.
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Figure 2.7: Prompt event energy spectrum of νe candidate events (top) and allowed re-
gion for neutrino oscillation parameters from KamLAND and solar neutrino experiments
(bottom). All histograms corresponding to reactor spectra and expected backgrounds incor-
porate the energy-dependent selection efficiency shown on the top. For the bottom plot, the
side panels show the ∆χ2-profiles for KamLAND (dashed) and solar experiments (dotted)
individually, as well as their combination (solid). Images obtained from [54].

Figure 2.7: The oscillation parameter regions allowed by the KamLAND experiment (solid colors) and
the combined solar experiments (black lines). The side plots show the two one-dimensional profiles for
KamLAND (dashed), solar (dotted), and combined (solid). The consistency between the solar and reactor
measurements lends significant support to the oscillation model of neutrino disappearance. Figure taken
from [65].

are combined, the resulting measurement has a precision of better than 3.5% [35]:

∆m2
12 = (7.59± 0.20)× 10−5 eV2, tan2 θ12 = 0.47+0.06

−0.05. (2.156)

After the initial discovery of oscillations, Super-Kamiokande continued to run and improve its

measurements of oscillations in atmospheric neutrinos. The most recent result, based on data from

phases SK-I, SK-II, and SK-III and including the possibility of sub-leading (θ13) oscillation effects,

find at 90% confidence assuming m3 > m1,2 (the ‘normal hierarchy’) [66],

1.9× 10−3 ≤ |∆m2
atm| ≤ 2.6× 10−3 eV2 0.407 ≤ sin2 θ23 ≤ 0.583 (2.157)

with central values ∆m2
atm = 2.1× 10−3 eV212 and sin2 θ23 = 0.5.

The atmospheric oscillations were confirmed by experiments using νµ’s from terrestrial accelera-

tors, just as the solar results were confirmed by the KamLAND reactor experiment. The experiments

were designed with neutrino sources and detectors separated by approximately a quarter of the at-

mospheric oscillation length, the distance over which a neutrino with energy E will oscillate back

to its original state. In a sense the oscillation length is the ‘wavelength’ of the oscillation, and it is

12The atmospheric mass-splitting is referred to as ∆m2
atm since it is, in fact, a combination of ∆m2

23 and ∆m2
13

which are too close to each other to be easily distinguished.
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Figure 2.8: The allowed oscillation parameters at 90% confidence from MINOS in black [67], Super-
Kamiokande in red and blue [68], and K2K in purple [69].

given by,

Latm = 4π
Eh̄c

|∆m2
atm|c4

≈ 2.5
E

|∆m2
atm|

m, (2.158)

where E is the neutrino energy in MeV and |∆m2
atm| is the neutrino mass-splitting in eV2. The

first confirmation came from the K2K experiment in Japan where νµ’s produced at approximately

1 GeV at the KEK accelerator were observed in the Super-Kamiokande detector 250 km away

(Latm ≈ 1, 000 km for E = 1 GeV with the |∆m2
atm| measured by Super-Kamiokande).

The most precise accelerator measurement to date is from the MINOS experiment, which uses

neutrinos with E ≈ 3 GeV and a baseline of 735 km and is described in great detail in the next

chapter. After analyzing an exposure of 7.2 × 1020 protons-on-target, the atmospheric parameters

were measured to [67]:

|∆m2
atm| = 2.32+0.12

−0.08 × 10−3 eV2 sin2(2θ23) > 0.90 (90% C.L.) (2.159)

where, again, the central value of the mixing angle is maximal.13 MINOS has the most precise

measurement (better than 5% precision) of the mass splitting because of its good energy resolution.

Super-Kamiokande continues to have the best measurement of the mixing angle due to its large

sample of oscillated neutrino events. Note that none of the atmospheric-sector experiments to date

are sensitive to the sign of ∆m2
atm, only its absolute value |∆m2

atm|, since matter effects do not alter

the νµ − ντ transition.

13Maximal mixing, which means the disappearance probability can reach unity, occurs when sin2 θ23 =
0.5, sin2(2θ23) = 1, θ23 = 45◦.
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The final mixing angle, θ13, has not yet been determined definitely to be nonzero in any experi-

ments. If it is non-zero it will drive the disappearance of electron (anti)neutrinos at the atmospheric

oscillation length (Equation 2.158) with survival probability given by:

P (ν̄e → ν̄e) = 1− sin2 2θ13 sin2

(
1.27∆m2

atm

L

E

)
, (2.160)

where L is in meters and E is in MeV. The CHOOZ experiment, in northern France, searched for

the disappearance of reactor electron antineutrinos (E ≈ 3.6 MeV). The experiment searched for

inverse beta-decay in a Gd-doped (to enhance neutron capture) liquid scintillator detector situated

1 km from the two reactors at the CHOOZ nuclear power plant. No electron neutrino disappearance

was observed, and hence only an upper limit could be set on the value of the last mixing angle [35],

sin2 2θ13 < 0.15 (90% C.L.). (2.161)

The last PMNS parameter accessible in oscillation experiments, the CP-phase δ, has not yet been

constrained at all. There is great interest in measuring δ since a non-zero value means that neutrinos

are CP-violating, meaning they might have played a role in producing the matter-antimatter asym-

metry in the early universe, a process called ‘leptogenesis’ [70]. In Equation 2.131, δ always appears

connected to sin θ13 and so cannot be measured unless θ13 > 0. Furthermore, the size of any CP-

violating effect will depend directly on the value sin2(2θ13) since the terms always appear together.

Measuring the sign of ∆m2
atm also depends on the value of θ13 since this is the parameter governing

νe appearance over atmospheric oscillation lengths. It is necessary to observe νe appearance since

matter effects only influence oscillations involving νe’s, and only matter effects are sensitive to the

sign of ∆m2
atm.

Consequently, all of the next-generation neutrino oscillation experiments commencing operations

now or in the near future are focused on measuring θ13. There are three reactor experiments which,

like CHOOZ, measure electron antineutrino disappearance, giving them direct access to the value

of sin2(2θ13). These experiments are Double CHOOZ [71] in France, Daya Bay [72] in China, and

RENO [73] in Korea. They all use the same basic detection technique: Gd-doped liquid scintillator

detectors which detect antineutrinos via inverse beta decay, placed at both near and far locations.

The experiments vary in the number detectors, their positions relative to the reactors, and the details

of the detector construction. In addition to the reactor experiments, there are also two accelerator-

based experiments searching for electron neutrino appearance rather than disappearance: T2K [74]

in Japan and NOνA [75] in the United States. T2K uses the existing Super-Kamiokande detector

with a new neutrino beam from Tokai, approximately 300 km away. NOνA, on the other hand, is

building a new fully-active detector made up of cells of liquid scintillator optimized for observing νe

events 800 km away from the existing NuMI beamline at Fermilab. The appearance experiments,
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rather than making a pure sin2(2θ13) measurement, instead measure a more complicated appearance

probability, P (νµ → νe), that depends on several parameters, including the CP-phase δ and and

mass hierarchy. The different experiment types are thus complimentary, like KamLAND and the

solar experiments or MINOS and Super-Kamiokande.

2.4 Antineutrino Oscillations

Oscillations in the solar sector have been studied in great detail with both νe’s from the Sun and

ν̄e’s from nuclear reactors. As can be seen in Figure 2.7, the solar sector neutrino and antineutrino

oscillations are in good agreement. The atmospheric sector measurements, on the other hand, have

been performed primarily with νµ’s, in the case of accelerator neutrinos, or a mixed sample coming

from the atmosphere. However, even the mixed sample is primarily neutrinos since they have twice

the interaction cross section of antineutrinos at high energies and up to 4 times the cross section at

low energies.

Before the MINOS measurements described in this thesis, there were no direct, precise mea-

surements of atmospheric sector oscillations in antineutrinos. The NuMI beamline was running in

neutrino mode and measurements were only made with neutrino-like events. Super-Kamiokande had

antineutrino events, but they were the minority. Plus, whatever the fraction of antineutrino events,

the Super-Kamiokande water Cherenkov detector is unable to distinguish individual neutrinos from
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Figure 2.9: The black dashed line is a profile in |∆m2
atm| vs. sin2(2θ̄23) from a global fit to all neutrino

and antineutrino data, from [76]. The colored |∆m2
atm| vs. sin2(2θ23) contours are from MINOS [77] and

Super-Kamiokande [68] circa 2008. The combined global fit for antineutrinos is significantly broader than
any individual measurement for the neutrinos. The global fit does not include the MINOS antineutrino
results which are presented in the rest of this thesis.
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antineutrinos, so measurements could not be made on a pure sample.

Even so, some constraints were able to be placed on the antineutrino oscillation parameters,

|∆m2
atm| and sin2(2θ̄23), in a global fit to all neutrino oscillation data. The fit includes data from

many solar, reactor, atmospheric, and accelerator experiments, but most of the constraint on these

parameters comes from the Super-Kamiokande data. The global fit 90% C.L. contour, made in 2008,

can be seen in Figure 2.9, compared to three individual measurements of the neutrino parameters

from contemporary experiments. Each individual neutrino experiment places significantly better

limits than the combined global fit to the antineutrinos.

2.5 Differing Neutrino and Antineutrino Oscillations

This thesis focuses on measurements of flavor oscillations via the disappearance of muon antineu-

trinos at an L/E ≈ 250 km/GeV. At this distance, the disappearance probability is governed, to a

good approximation, by two-neutrino oscillation with ν̄µ → ν̄τ . With only two neutrinos, the mixing

matrix U must be real and ‘standard’ neutrino CP-violation via the phase δ cannot influence the

disappearance probabilities, PL(ν̄µ → ν̄µ) and PL(νµ → νµ). Thus, as was shown in Equation 2.138,

if PL(ν̄µ → ν̄µ) 6= PL(νµ → νµ) then either the neutrinos are not CPT invariant or some other new

physics needs to be introduced.

2.5.1 Non-standard Interactions

Standard matter-effects do introduce differences between neutrinos and antineutrinos since the ad-

ditional components of the Hamiltonian have opposite signs. However, they cannot influence the

ν̄µ → ν̄τ transition which does not involve νe’s. However, some other physics process could introduce

additional Hamiltonian terms in the same way. Generically, these processes are called ‘non-standard

interactions’ (NSI). A number of models have been proposed which introduce effects that, like matter

effects, have opposite signs for neutrinos and antineutrinos. Examples include a flavor-dependent

potential introduced by very light Z ′ bosons from a gauged Lµ −Lτ symmetry [78]; a new charged-

current coupling between ντ ’s and leptons, constructed so that flavor-violating contributions to τ

decays are sufficiently suppressed [79]; and inclusion of a sterile neutrino, making the neutral-current

matter effects non-trivial and/or introducing a new U(1) gauge force coupled to B − L [80].

A generic, model-independent formalism for NSI can be found in [81]. Non-standard interactions,

whatever their source, will add a term to the Lagrangian of the form

LNSI = −GF√
2

∑
f=u,d,e
a=±1

εfaαβ

[
ν̄αγ

µ
(
1− γ5

)
νβ

][
f̄γµ

(
1 + a γ5

)
f
]

(2.162)
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where the various εfaαβ coefficients give the strengths of the NSI effects. Analogous to standard matter

effects, this NSI Lagrangian will add an additional term to the effective Hamiltonian with the form

HNSI = V


εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

 (2.163)

where V =
√

2GFNe is the MSW potential and the NSI parameters have been summed over the

various fermion contributions,

εαβ =
∑
f,a

εfaαβ
Nf
Ne

(2.164)

where Nf is the number density of fermion f in the (unpolarized) medium.

There have been numerous analyses of the existing neutrino data searching for evidence of NSI.

The existing constraints are summarized in [82]. The constraints are for neutrinos only, and the

constraints get tighter (usually by an order of magnitude) when the NSI effects are included as part

of a renormalizable theory and their effects on the charged leptons are accounted for. There has

even been an analysis of the data presented in this thesis which finds a value for εµτ = −0.12± 0.21

[83].

2.5.2 CPT Violation

CPT is a fundamental symmetry in quantum field theory. CPT invariance is required in order to

have Lorentz-invariant models, and consequently any theory that includes CPT violation also, auto-

matically, includes Lorentz violation [84]. CPT invariance also requires that particles and antipar-

ticles share certain properties, including charge and mass. If different mass-splittings are measured

for neutrinos and antineutrinos, the naive interpretation that the neutrinos and antineutrinos have

different masses thus requires CPT violation [85].

CPT violation in the neutrino sector first came to the forefront as an explanation for the LSND

anomaly. The Liquid Scintillator Neutrino Detector (LSND) at Los Alamos searched for ν̄µ →
ν̄e oscillations using ν̄µ’s from muon decays at rest. They reported evidence of a mass splitting

∆m2 ≈ 1 eV2, inconsistent with the three-neutrino model and the two mass-splittings, ∆m2
atm

and ∆m2
sol, that had been previously measured [86]. A number of CPT -violating theories were

proposed to explain this discrepancy [87, 88, 89, 90], but the possible CPT -violating effects become

much more tightly constrained once effects outside the neutrino sector are taken into account [91, 92].

Some theories endeavor to simultaneously explain LSND and the MINOS antineutrino measurements

(discussed in Chapter 5) [93]. However, no theory has yet proven compelling and predictive.

Some theorists, primarily Alan Kostelecký and his colleagues at Indiana University, have studied
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possible Lorentz/CPT -violating models in great detail, including their possible influence on neutrino

experiments [94]. They even have a model that explains MINOS in particular [95], although for

now the model is more proof-of-principle and has too many parameters to be predictive. Using

the Kostelecký parameterization of possible Lorentz/CPT violation, numerous analyses have been

performed on experiments in wide-ranging areas of physics including, for example, neutral meson

oscillations [96, 97, 98], comparisons of clocks [99], muon spin precession [100], electron-positron g-2

[101], and many others. Searches have been performed in MINOS data for sidereal variations in the

neutrino rate, another signature of Lorentz-violation in the Kostelecký model [102, 103]. There has

been, to date, no convincing evidence of CPT violation in any sector.

2.6 Neutrino-to-Antineutrino Transitions

In addition to standard oscillations, this thesis also presents a search for νµ → ν̄µ transitions.

Transitions between neutrinos and antineutrinos were Bruno Pontecorvo’s original idea for neutrino

oscillations in the 1960’s [15]. The idea resurfaced in the literature around 1980 in the context of

understanding the consequences of Majorana neutrinos [104, 105]. More recently, several possible

models for neutrino-to-antineutrino transitions within the simplest Standard Model extensions for

neutrino mass are catalogued in [106]. The transitions can be helicity-violating, mediated either by

a Majorana mass term or by a magnetic moment, or they can be helicity-conserving, producing a

sterile left-handed antineutrino. The analysis in this thesis is sensitive only to transitions like the

ones mediated by the Majorana mass: the helicity-conserving transitions produce sterile neutrinos

which cannot be observed in the MINOS detectors and the magnetic moment transition requires

a change of flavor (e.g. νµ → ν̄e). However, since the Majorana mass-mediated transition requires

creating wrong-helicity states, its amplitude is suppressed by a factor proportional to (mν/Eν)2 and

consequently is expected to occur below the 10−7 level in a high-energy νµ beam, making the process

effectively unobservable [107]. Thus, any observation of νµ → ν̄µ would require new physics.

Such transitions could be introduced by the V+A currents that arise in left-right symmetric

models [108], but stringent limits have been set on leptonic V+A interactions by studies of the end

point spectrum in polarized µ+ decay [109], by studies of inverse muon decay [110], and by studies

of the high-y dependence of νµ/ν̄µ-nuclei interactions [111, 112]. Scalar (S) and pseudoscalar (P)

interactions can also introduce spin-flips and change the lepton helicity [113], but contributions from

these interactions were limited to less than 7% (95% C.L.) by investigations of the polarization of

µ+’s in ν̄µ interactions at the CHARM experiment [114]. Neutrino-to-antineutrino transitions could

also be introduced by certain CPT -violating parameters in the Kostelecký parameterization [94].

In the early 1980’s the BEBC bubble chamber in the CERN SPS neutrino beam was able to

set limits on transitions to ν̄e from νµ and νe [115]. The best limit on anomalous µ+ production
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in a νµ beam comes from the CCFR experiment: the fraction of µ+ relative to the CCνµ rate was

limited to 1.6 × 10−4 for y < 0.5 and 3.1 × 10−4 for y > 0.5 [116]. However, there have been no

measurements of transitions to ν̄µ’s at atmospheric oscillation length scales, or at such low energies:

the CCFR experiment used 120 GeV neutrinos and a baseline of 1.1 km. Searching for νµ → ν̄µ

requires a detector capable of identifying individual µ+’s among many µ−’s produced by the muon

neutrino beam, a unique capability of MINOS among long-baseline experiments. In fact, a recent

analysis used the limit described later in this thesis to improve limits on the effective Majorana

muon-neutrino mass, |〈mµµ〉| [117].

The search for neutrino-to-antineutrino transitions in this thesis uses an empirical parameteriza-

tion, based on the knowledge that νµ’s are known to be disappearing [67] in the NuMI beam with

an energy-dependence described by Equation 2.136 and the supposition that some fraction, α, of

those νµ’s are transitioning to ν̄µ’s instead of oscillating to ντ ’s. Thus, the appearance probability

takes on the form

P (νµ → ν̄µ) = α sin2(2θ23) sin2

(
∆m2

atm

L

4E

)
(2.165)

Note that the oscillation parameters above are those for neutrinos, not those for antineutrinos.
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Chapter 3

The MINOS Experiment

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino-oscillation ex-

periment. Its main components are the NuMI neutrino beam and two detectors. The NuMI beam is

located at the Fermi National Accelerator Laboratory (Fermilab or FNAL), where 120 GeV protons

from the Main Injector are directed at a fixed target to produce mesons which decay to produce

the neutrino or antineutrino beam. Oscillations are measured by sampling the primarily νµ or ν̄µ

beam at two locations: one close to the neutrino source before oscillations have occurred (the Near

Detector) and one located approximately a quarter of the atmospheric oscillation length (see Equa-

tion 2.158) away, where oscillations will be near maximal (the Far Detector). Like the NuMI beam,

the Near Detector is situated at Fermilab, 1 km downstream of the neutrino target. The Far Detec-

tor is situated 735 km from the neutrino source in the Soudan Underground Laboratory in northern

Minnesota.

The two-detector design makes the measurement of oscillations less dependent on simulation

and significantly more robust against a range of systematic uncertainties, especially the neutrino

flux from NuMI and the poorly known low-energy neutrino interaction cross section. Since these

10 km

12 km
735 km

Fermilab Soudan

Figure 3.1: Schematic views of the components of the MINOS experiment: the NuMI beam and Near
Detector at Fermilab and the Far Detector in Soudan, MN.
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Figure 3.2: Cross-sectional view of the NuMI beam complex and MINOS Near Detector Hall at Fermilab.
Figure taken from [118].

systematics affect both detectors in the same way, they are effectively cancelled out when both

detectors are used to measure oscillations. Section 5.3 describes how this process works in practice.

The rest of this chapter gives detailed descriptions of the main components of the experiment.

It describes the MINOS data, from the raw detector output through calibration and reconstruction.

It also includes a description of how the data is simulated.

3.1 The NuMI Beam

3.1.1 Making Neutrinos

Neutrinos at the Main Injector (NuMI) [118] is a conventional [119] neutrino beam, where primary

protons collide with a fixed target to produce secondary mesons which decay to tertiary neutrinos.

The 120 GeV protons are extracted from the FNAL Main Injector (MI) by three horizontal kickers

and three Lambertson magnets.1 The MI loads five batches from the Booster and then loads six more

into the gaps between the first five but with slightly different momenta. The second set of batches

then “slips” relative to the first until they overlap in a technique called “multi-batch slip stacking”

[120]. Typically, two batches are dedicated to the Tevatron collider [121] and the other nine are

extracted to NuMI [122]. The whole process repeats every 2.2 seconds, decreased from 2.4 seconds

or longer when NuMI began. Each set of batches has 36× 1012 protons when NuMI is sharing the

MI with the Tevatron, and more than 40 × 1012 protons per pulse when the MI is in NuMI-only

mode.2 The primary proton beam is then focused and bent downwards into the Earth at 58 mrad

(towards Soudan, MN) by a series of quadrupole and bending magnets. As the beam is focused and

directed towards the target, it passes through a series of position monitors, loss monitors, and proton

1Named for its inventor at Fermilab, a Lambertson is a special magnet with two bores, one with a bending field
and one field-free, designed for separating adjacent beams.

2These proton intensities are almost double the original design intensity of 25× 1012 protons per pulse.
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Figure 3.3: Drawing of a NuMI target and its housing.

counters before reaching a graphite collimating baffle just before the target. The baffle protects the

downstream beam components from being damaged by the beam halo. When the beam reaches the

target, it has an rms spot size of 1.1 mm. A cross-sectional view of the whole Fermilab facility can

be seen in Figure 3.2.

The target is made up of 47 vertical graphite fins, each 6.4 mm wide, 15 mm tall, and 20 mm long

with 0.3 mm spacing. They are arranged longitudinally to form a total target length of 954 mm,

approximately 1.9 hadronic interaction lengths. A 48th fin is mounted horizontally upstream of the

main target to help align the beam in target scans. The graphite fins are water cooled by pipes

running along the top and bottom of each fin. A drawing of the target and its housing can be seen

in Figure 3.3. When the primary protons collide with the target, they produce a secondary beam of

unfocused pions and kaons,

p+ C → h± +X, h = {π,K} . (3.1)

The NuMI targets have a limited lifetime. Even if a target does not develop an obvious problem,

such as a water leak, the graphite appears to delaminate over time, losing density in the region

around the shower maximum, where the most primary beam energy is absorbed. This degradation

gradually leads to a several percent drop in the neutrino flux in the focusing peak. NuMI target

NT-02, which was installed between Runs I and II, began to show the effects of degradation about

half way through Run II and throughout Run III.

The flux of neutrinos is enhanced by focusing the secondary beam using two magnetic focusing

horns [123], shown in Figure 3.4. A current3 of 185 kA passes along the outer and inner surfaces

3185 kA is the typical operating current in the LE configuration. The maximum possible current is 200 kA.
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Figure 3.4: Above, a design drawing of Horn 2. Below, a picture of a NuMI horn being installed.
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Figure 3.5: A cartoon showing how the horn focusing enhances the flux of neutrinos by bending positive
mesons towards the beam axis. In addition to the focused mesons, there are also mesons of both charge
signs that pass through the centers of the horns, avoiding focusing.
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Figure 3.6: The pT vs. pZ distribution of the π± parents that produce neutrinos (left) and antineutrinos
(right) at the Near Detector when the beam is in low-energy neutrino-mode mode. The unfocused component
has a broad range of pZ , and hence total momentum, producing the diffuse high-energy tail.

(called ‘conductors’) of the horn in opposite directions, producing a toroidal magnetic field between

the horn surfaces with peak intensity of 2.8 T. This magnetic field serves to sign- and momentum-

select the mesons produced in the target by bending mesons toward or away from the beam axis. The

horns act like point-to-parallel focusing lenses, with focal lengths proportional to particle momentum,

thanks to the parabolic shape of the inner conductors. When a meson is bent towards the axis, the

likelihood that its daughter neutrino will reach a MINOS detector is increased since the daughter

neutrino will preserve much of the parent’s forward boost after the parent decays. Figure 3.5 shows

a cartoon of the horn focusing process.

The focusing horns selectively focus mesons from a particular region of pT − pZ momentum

space (see Figure 3.6, left), producing the focusing peak at a particular energy. The peak energy

of the beam can be adjusted by changing either the relative distance between the two horns or the
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Figure 3.7: The neutrino spectrum produced when the beam is in low energy (LE) mode with the target at
its furthest downstream position, pseudo-medium energy (pME) mode with the target moved 1 m upstream,
and pseudo-high energy (pHE) mode with the target moved 2.5 m upstream.

relative distance between the target and Horn 1. In practice, only the latter method is used since

the target can be moved without opening up the shielding around the target hall. Figure 3.7 shows

the neutrino spectrum produced when the beam is in low energy (LE) mode with the target at

its furthest downstream position, pseudo-medium energy (pME) mode with the target moved 1 m

upstream, and pseudo-high energy (pHE) mode with the target moved 2.5 m upstream.4

The focused mesons which make up the focusing peak are not the only component of the sec-

ondary beam. Some mesons with low transverse momentum, called ‘neck-to-neck,’ pass through the

necks of both horns without being focused or defocused (also shown in Figure 3.5). As can be seen

on the right in Figure 3.6, these mesons have a wide range of longitudinal, and hence total momenta,

and they produce the diffuse high-energy tail in the neutrino spectrum. These neck-to-neck par-

ents are the primary source of antineutrinos in the neutrino-mode beam since most other would-be

antineutrino parents (π−,K−) are defocused when the beam is tuned for neutrinos.

After being focused by the horns, the mesons enter the decay volume: a 675 m long, 2 m diameter

steel pipe embedded in concrete shielding. Its length is approximately the decay length of a 10 GeV

pion. The mesons enter this volume and decay to produce neutrinos via a number of processes,

which are listed in Table 3.1, though the two-body decays of pions are by far the most important

(they make up more than 80% of the beam, and are even more prevalent at the lower energies

sensitive to oscillations). Since the mesons are boosted strongly towards the detectors thanks to the

focusing horns, the neutrinos are boosted in that direction as well (the kinematics of meson decay

4The pseudo in pME and pHE is because true ME and HE modes require moving Horn 2 further downstream
from Horn 1 in addition to moving the target upstream.
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Process Frequency
π+ → νµ + µ+ 78.9%
π− → ν̄µ + µ− 5.6%

K+ →
νµ + µ+ 12.0%
νe + π0 + e+ 0.53%
νµ + π0 + µ+ 0.30%

K− →
ν̄µ + µ− 0.65%
ν̄e + π0 + e− 0.03%
ν̄µ + π0 + µ− 0.02%

K0
L →

νe + π− + e+ 0.32%
ν̄e + π+ + e− 0.14%
νµ + π− + µ+ 0.18%
ν̄µ + π+ + µ− 0.09%

µ+ → ν̄µ + νe + e+ 1.2%
µ− → νµ + ν̄e + e− 0.07%

Table 3.1: The decays that produce neutrinos and their frequency at the Near Detector.

are discussed in detail in Appendix A). Originally, the decay pipe was evacuated to approximately

1 torr, giving the mesons the best chance to decay without interacting in the decay volume. Over

time, however, the aluminum window at the upstream end of the decay pipe degraded, risking an

implosion at a location that is impossible to repair since it had become highly radioactive. In

order to alleviate this risk, the pressure on the window was reduced by filling the decay pipe with

0.9 atm of helium.5 The addition of helium has two effects on the flux. One, some mesons that

would have decayed to neutrinos interact with the helium instead, causing a few percent decrease

in the focusing peak. In addition, it provides an additional target for meson, and hence neutrino,

production, causing a small increase in flux above the focusing peak.

The end of the decay pipe is followed by a beam dump and 240 m of rock to stop the remaining

primary and secondary beams, as well as the tertiary muons, leaving only neutrinos. There are a

series of ionization chambers in this region that monitor the remaining hadrons and the tertiary

muons produced with the neutrinos in the meson decays. In the end, the NuMI beam is 91.7% νµ.

There is an additional 7% ν̄µ component (which is used in the analysis described in Chapter 5),

and a 1.3% νe/ν̄e component. More details about the NuMI beam and the downstream monitoring

devices can be found in [118].

3.1.2 Making Antineutrinos

The NuMI beam can be converted from a predominantly muon neutrino beam to a predominantly

muon antineutrino beam by reversing the direction of the current flowing through the focusing horns.

This change flips the direction of the toroidal magnetic field, focusing negative mesons instead of

positive ones. Figure 3.8 shows a cartoon of focusing in antineutrino mode.

5The helium is at a slight under-pressure to avoid reversing the direction of the force on the window.
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Figure 3.8: A cartoon showing how the horn focusing enhances the flux of antineutrinos by bending negative
mesons towards the beam axis. In addition to the focused mesons, there are also mesons of both charge
signs that pass through the centers of the horns, avoiding focusing.
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Figure 3.9 shows a comparison of the neutrino and antineutrino event rate at the Near Detector

in neutrino mode and antineutrino mode. The antineutrino-mode beam has significantly more

antineutrinos at the low energies necessary for an oscillation measurement, but its overall purity

is not as high as the neutrino-mode beam. The antineutrino-mode beam is 40% ν̄µ, 58% νµ, and

2% νe/ν̄e. The large νµ-component in antineutrino mode, like the ν̄µ component in neutrino mode,

comes from the neck-to-neck parents that produce the high-energy tail. In fact, the high-energy tail

(above approximately 10 GeV) is unchanged between neutrino mode and antineutrino mode.

The reason the high-energy tail is predominantly νµ’s and the reason antineutrino-mode focusing

peak is about a third lower than the neutrino-mode peak is the same: νµ’s have higher cross sections,

both at production and when interacting. At the relevant momentum range (4 − 10 GeV parent

momentum, which translates to approximately 2 − 5 GeV neutrino energy), π+’s (νµ parents) are

produced approximately 30% more often than π−’s (ν̄µ parents). This effect can be seen in the ratio

of π+ to π− production from the NA49 experiment at CERN [124] as well as numerous simulations,

shown in Figure 3.10 (left). νµ’s also have an interaction cross section more than a factor of two

larger than ν̄µ’s, and the effect gets larger at lower energies, as can be seen at numerous experiments

(including MINOS’s own measurement [44]) in Figure 3.10 (right).

3.1.3 MINOS Beam Data

During the last six years of running, MINOS has collected approximately 12 × 1020 protons-on-

target (POT) in a variety of beam modes described in Section 3.1.1. Figure 3.11 shows the POT
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accumulated per week during its first five years. The data is divided up into run periods separated

by accelerator shut-downs and significant beam events (e.g. switching to antineutrino mode). The

majority of the data was taken in the low energy neutrino mode. Significant samples were also

taken in low energy antineutrino mode (1.7 × 1020 POT) and pseudo-high energy neutrino mode

(0.15×1020 POT). Smaller samples were also taken in a range of target positions and horn currents,

including horn-off, for constraining the flux and other specialized applications.

The neutrino-mode antineutrino analysis described in Chapter 5 uses the 3.2 × 1020 POT of

low energy running accumulated during Runs I and II. The antineutrino-mode analysis described in

Chapter 6 uses the 1.7× 1020 POT accumulated in antineutrino mode during Run IV.

The addition of helium to the decay volume described in the previous section occurred between

Runs II and III. Targets were also changed between Runs I and II and betweens Runs III and IV.

NT02, the target used for three years throughout Runs II and III lasted long enough to show a slow

decrease in the number of events in the focusing peak (see Section 3.1.1). The data used in this

thesis does not include significant target degradation.

3.1.4 Beam Simulation with Flugg

The neutrino flux from NuMI is simulated using the Flugg [125, 126, 127] package to incorporate

a GEANT4 [128] geometry into a Fluka [129, 130] simulation of the hadronic production, decay,

and transport processes.6 The technical details are described in Appendix F. The flux simulation

is primarily a simulation of the secondary meson beam. It starts with 120 GeV Main Injector

protons incident on a graphite target and simulates the production of the secondary mesons and their

transport through the horn focusing fields and into the decay pipe, as well as any further downstream

interactions. Whenever a particle would decay to produce a neutrino, the properties of the parent

are recorded to disk. Then, from that information (position and momentum), the probability of that

parent’s daughter neutrino reaching one of the detectors, as well as what energy that neutrino would

have, can be calculated (these calculations are detailed in Appendix A). Effectively, every neutrino

produced is forced to go to the detectors, but with a weight that accounts for its probability of

actually doing so, saving significant processing time. This weighted neutrino flux serves as the input

to the MINOS detector simulation described in Section 3.5.

The beam simulation uses importance sampling and weighting to reduce the number of low

energy particles that need to be simulated. Naturally, the simulation produces many more low

energy mesons than high energy ones, which can make it difficult to accumulate enough statistics at

higher energies. Relative to the energy distribution of the experiment, the higher energies are under-

represented in the beam simulation out of the box. A 1 GeV tracking threshold is included since

those mesons will produce approximately 500 MeV neutrinos, which is the lowest energy neutrino

6I wrote the Flugg beam simulation and produced all the flux Monte Carlo now in use in the MINOS experiment.
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Figure 3.12: The ratio of the Near Detector spectrum with helium in the decay pipe to the spectrum with
an evacuated decay pipe for neutrinos (left) and antineutrinos (right). The black line represents the older
GNuMI simulation, the red line represents the newer Flugg simulation, and the blue points represent the
data. As shown, the Flugg-based simulation is significantly better at reproducing the effects of helium seen
in the data.

the MINOS detectors are sensitive to, but even then there are still too many low energy particles.

In order to speed up the simulation and reduce the space required on disk, pions below 30 GeV

are importance sampled and weighted: a fraction of the events are thrown away, but the remaining

events are given a weight larger than one so that the total weighted flux remains unchanged. This

technique distributes the processing time and statistics more evenly across all energies even though

many fewer high energy particles are produced. The weight W is calculated as,

W = Wparent
30 GeV

|Ptotal|
(3.2)

where Wparent is the importance weight of the particle’s parent (initial protons start with weight 1)

and |Ptotal| is the total momentum of the particle. Weights can never be below 1 and are capped at

100 to prevent a single event from being too important.

The previous beam simulation, called GNuMI, was also part-GEANT and part-Fluka. It simu-

lated the interaction of the primary protons with the target entirely in Fluka and then simulated

the transport of the particles leaving the target in GEANT3. GEANT3 uses GFluka, an older

less reliable version of the Fluka hadronic interaction model, to model the interactions outside the

target. This two-part simulation worked well as long as interactions outside the the target were

not important, but that changed when the decay pipe was filled with helium. GFluka significantly

overestimated the amount of high energy neutrino production from interactions with the helium.

This mis-modeling was particularly troublesome because parents produced in the decay pipe tend to

decay very close to the Near Detector, meaning they have large Near-to-Far spectral differences (see

Section 5.3). The Flugg simulation, which uses the up-to-date Fluka interaction models both in the

target and throughout the beamline, does a much better job of predicting the amount of production
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Figure 3.13: Near Detector spectra of νµ CC events in the data compared to the predic-
tions from the original simulation and from the tuned simulation, in the low-energy (LE),
pseudo-medium energy (pME) and pseudo-high energy (pHE) beam configurations. The
corresponding data to MC ratios are shown in the bottom panels, before and after tuning.
In all cases the tuned simulation agrees very well with the data.

Simulation of the Neutrino Interactions

Neutrino interactions are modeled with the NEUGEN program [98, 99]. NEUGEN simulates

both quasi-elastic and inelastic neutrino scattering in the range of 100 MeV to 100 GeV, and

was developed mostly by MINOS collaborators. NEUGEN was first used in the Soudan 2

experiment.

Of particular interest to this thesis is the simulation of hadronic showers, which con-

stitute the main background to the νe CC appearance analysis. Hadronization in NEU-

GEN is handled by the AGKY model [100]. AGKY uses the PYTHIA/JETSET [101]

model to simulate hadronic showers at high hadronic invariant masses W but incorpo-

rates a phenomenological description of low invariant mass hadronization. The reason for

this is that the PYTHIA/JETSET model deteriorates near the pion production thresh-

old. The phenomenological model implemented in AGKY is based on Koba-Nielsen-Olesen

(KNO) scaling [102], although it incorporates several improvements. The transition from

the KNO-based model to the PYTHIA/JETSET model takes place gradually at an inter-

Figure 3.13: The Near Detector νµ spectrum, in data (black), raw simulation (blue), and flux-tuned simula-
tion (red), in three different beam configurations. The flux tuning significantly improves the data-simulation
agreement in all beam configurations.

from helium interactions, as can be seen in Figure 3.12.

Even with the best available hadronic interaction models, there is still significant uncertainty in

simulating the flux, which is reflected in data-simulation discrepancies at the Near Detector. While

data-simulation agreement at the Near Detector is not required for the oscillation measurement, the

data is much easier to analyze if the flux simulation can be tuned to better describe the observed

spectrum. The flux is warped as a function of the properties of the neutrino parents as they leave the

target. The warping is determined using a simultaneous fit to multiple beam configurations including

standard low energy, horn off (i.e. no focusing), pseudo-medium energy, pseudo-high energy, and

runs with varying horn currents at those target positions. Running in these different modes allows

the Near Detector data to sample different regions of the pT − pZ space, allowing for a better

tuning to the underlying hadron production. Both neutrino and antineutrino samples are used,

but the antineutrino sample, coming from unfocused neck-to-neck parents, changes little between

configurations. So, to better constrain antineutrino production, the pion charge ratio is constrained

to the measurement at NA49 [124]. Data-simulation discrepancies as large as 30% in the high-energy

tail are brought into good agreement, as can be seen in the focused neutrino spectra in Figure 3.13

and in the unfocused antineutrino spectrum in Figure 3.14. Even so, the flux tuning has been shown

to have little impact on the final oscillation analysis since the uncertainties in the flux cancel in the

Near-to-Far extrapolation.
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Figure 3.14: The Near Detector ν̄µ spectrum, in data (black), raw simulation (blue), and flux-tuned sim-
ulation (red). The flux tuning, constrained by the NA49 pion charge ratio, significantly improves the
data-simulation.

3.2 The MINOS Detectors

The MINOS detectors are tracking, sampling calorimeters made up of alternating planes of 1-cm

thick plastic scintillator, segmented into 4 cm-wide strips, and 1-in thick steel passive absorbers.

The direction of the strips alternates plane-to-plane to allow three-dimensional reconstruction, as

shown in Figure 3.15. The detectors are toroidally magnetized (and hence each have a hole cut

through them for the coil), enabling track charge-sign identification and momentum measurement

for tracks that exit the detector. The two detectors are built with neutrino interaction environments

as identical as possible so that uncertainties can cancel out in the analysis.

The Far Detector, which measures the oscillated neutrino spectrum, is made up of 486 octagonal

steel-scintillator planes which are 8 m edge-to-edge with a total mass of 5400 metric tons and is

divided longitudinally into two “super modules.” It is located in the Soudan iron mine, Minnesota’s

oldest, which been inactive since 1962 and now operates as a State park. The detector is 705 m

underground (2070 meters-water-equivalent) and 735 km from the neutrino source at Fermilab. Only

a few beam neutrinos interact in the Far Detector each day and the cosmic event rate is approximately

0.5 Hz at that depth, so the signal rate at the Far Detector is dominated by spontaneous WLS fiber

emission and PMT dark noise which have a combined rate of approximately 4 kHz per PMT. The

Far Detector also has a series of scintillator planes placed horizontally over the top of the detector to

identify cosmic ray muons whose vertical tracks might otherwise travel far through the gaps between

the scintillator before depositing any visible energy, thus mimicking a contained atmospheric neutrino

event.
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Figure 3.5: Schematic of the MINOS steel-scintillator sampling calorimeters as viewed from
an angle (left) and from the side (right). The detectors consist of planes of scintillator and
steel. Alternating scintillator planes have strips perpendicular to one another. Even though
the planes shown here have the octagonal shape of the Far Detector planes, the principle
remains the same for the Near Detector.

Light Collection

The strips are made of polystyrene doped with the fluors PPO (1% by weight) and POPOP5

(0.03% by weight)[89]. Each scintillator strip is extruded with a 2.0 mm wide, 2.5 mm deep

groove driven along it. A 1.2 mm diameter wavelength-shifting fiber (WLS) is glued into the

groove with optical epoxy in order to collect the light produced by the interaction of charged

particles with the scintillator, as illustrated by Figure 3.6. A reflective seal of aluminized

Mylar tape is placed over the groove after the WLS fiber has been glued. The strips are

up to 8 m long, and are coextruded with a 0.25 mm thick layer of titanium dioxide TiO2,

which acts as a reflector that traps the light until it is absorbed by the WLS fibre.

The WLS fibre is a double-clad polystyrene fibre doped with Y11 fluor. It absorbs the

blue (λ ∼ 420 nm) photons from the scintillator and emits them isotropically in the green

(λ ∼ 530 nm). Those photons whose directions fall within the total internal reflection cones

are transported along the fiber. Groups of strips are encased within aluminum sheets into

light-tight modules of several different sizes and shapes. At the end of each module, the

WLS fibers are routed into an optical connector. Light is then carried by a cable made with

clear polystyrene fiber to a photomultiplier (PMT) box.

5PPO stands for (2,5-diphenyloxazole) and POPOP for (1,4-bis(5-phenyloxazol-2-yl)benzene).

Figure 3.15: The scintillator planes are each attached to a steel plane, arranged so that alternating planes
have strips perpendicular to one another to allow 3D event reconstruction. The strips are arranged at ±45◦

angles, labeled the U and V axes. Figure from [131].52 The MINOS Experiment
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Figure 3.8: The MINOS Far Detector viewed from the front. The cosmic ray veto shield is
visible on the top and on the sides of the detector.

out of five consecutive planes have a dynode trigger. The plane trigger allows MINOS to

record atmospheric neutrino interactions that occur outside the beam spill window. Also,

fake spill triggers are generated to monitor backgrounds. Finally, there are also triggers

used for debugging and for calibration.

A picture of the Far Detector is shown in Figure 3.8. As seen there, the Far Detector is

surrounded on the top and on the sides by a cosmic ray veto shield. The veto shield is built

from the same 8 m long modules each containing 20 strips that are used in the main body

of the detector, but with the orientation of the strips aligned along the beam direction.

Consequently, it is read out in the same fashion as just described. By tagging cosmic

rays with high efficiency and thus greatly reducing the cosmic ray background, the veto

shield is an essential tool for the different atmospheric neutrino analyses in MINOS, such

as the analysis detailed in [92]. Part of our initial work in MINOS consisted of tuning and

calibrating the MINOS veto shield, which required the implementation of new reconstruction

software tools. This work is presented in Appendix A.
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Figure 3.11: The MINOS Near Detector. The coil hole is located approximately 1.5 m away
from the beam center. The crates on the left house all the readout electronics. The detector
is only read out from one end.

At the typical beam intensity of 2.2×1013 protons-on-target (POT) per spill, an average

of 16 neutrino interactions occur in the Near Detector for every NuMI spill in the LE config-

uration. Of these, about half occur in the calorimeter region and may be fully reconstructed.

Consequently, the Near Detector needs fast electronics where there is no deadtime for the

duration of a spill. This is achieved through the use of the Charge Integrator and Encoder

(QIE) chip, which is a custom integrated circuit developed at Fermilab.7 The QIE sits on

a circuit board called a MINOS Electronics for Neutrinos (MENU), alongside a commercial

flash analog-to-digital converted (FADC) and a data buffer. Each PMT pixel is attached

to a QIE, which integrates and processes its charge at the 53 MHz frequency of the Main

Injector (i.e., every 18.8 ns). The QIE splits the signal current into eight binary-weighted

ranges and integrates each range onto a capacitor, in order to identify the signal range which

is output to the FADC. Each QIE is equipped with four independent copies of the circuitry,

which allows for continuous operation without deadtime. 16 MENUs are grouped into a

MINOS Near Detector Electronics Readout (MINDER) board which is responsible for the

7The QIE is also used in experiments such as KTEV and CDF.

Figure 3.16: Pictures of the MINOS Far (left) and Near (right) detectors.

The design of the Near Detector is similar to that of the Far but is smaller and has different

electronics to account of its significantly higher event rate. During a single 10 µs beam spill there

can be 10 interactions from beam neutrinos alone7 – a rate four orders of magnitude larger than at

the Far Detector. Consequently, the detector does not need to be nearly as large: the Near Detector

is made up of 282 planes with a total weight of 980 metric tons. It is 1 km from the NuMI target

and is 100 m below ground (225 meters-water-equivalent).

The calibration detector, “CalDet,” was a much smaller, unmagnetized detector. It consisted

of 60 1 m × 1 m planes and had a total mass of 12 tons. It was exposed to controlled test beams

of protons, pions, electrons, and muons at CERN. Both charge signs and momenta ranging from

0.2 GeV to 10 GeV were studied. CalDet was able to provide measurements of the expected

topological and calorimetric responses of the Near and Far Detectors for various particles of known

momenta.

73.5 reconstructed events per 1013 POT.
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Figure 3.17: Cut-away view of a single MINOS scintillator strip. An ionizing particle passing through the
strip produces photons which are multiply reflected by the TiO2-loaded coating until they are picked up by
the WLS fiber. The light is then wavelength-shifted and transported to the photodetectors at the edge of
the detector.

3.2.1 A MINOS Plane

The lowest-level unit of the MINOS scintillator system is the strip. Each scintillator strip is 1 cm

thick, 4 cm wide and between 2.5 m (the shortest Near Detector strips) and 8 m (the longest Far

Detector strips) in length. Figure 3.17 shows a MINOS scintillator strip. The bulk of the material

is clear polystyrene with 1.03% by weight scintillating fluors mixed in at extrusion time. Each strip

is co-extruded with a 0.25 mm reflective coating made from polystyrene with 15% TiO2 mixed in.

This coating traps and reflects the light, keeping each strip optically isolated from its neighbors.

In order to get the light out of the scintillator and to the photodetectors, there is a wavelength-

shifting (WLS) fiber running the length of each strip. The strips are extruded with a 2 mm groove

in the middle of one of the wide sides into which the fiber is glued and then covered with reflective

tape. The WLS fiber, doped with Y11 fluor, absorbs the blue photons (λ ≈ 420 nm) produced by

the scintillator and re-emits them as green photons (λ ≈ 520 nm), minimizing self-absorption. The

green photons are emitted isotropically and any that fall within the fiber’s total internal reflection

cones are transported out.

Groups of strips, between 16 and 24, are bundled together into modules. Each module is wrapped

in aluminum to make it light-tight and to protect it during transportation and installation. It is

as modules that the scintillator was transported to the detector sites, and individual modules were

attached to the steel plates to build up a steel-scintillator plane. The various modules, and their

arrangement into planes, are shown in the Far Detector in Figure 3.18 and in the Near Detector
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Figure 3.7: Layout of U modules on a Far Detector plane. The V configuration is equivalent
but rotated by 90 ◦. Eight fibers from different modules are directed into a single PMT pixel.
Strips are read out from their two ends. The MUX boxes are the enclosures that contain
the PMTs. Image obtained from [90].

as a result.

3.3.2 The Far Detector

The MINOS Far Detector is located at the Soudan Underground Laboratory in northern

Minnesota at a depth of 2070 meters-water-equivalent (705 m). It is placed 735 km from

the NuMI target, and has a mass of 5,400 metric tons (or 5.4 kt).

The Far Detector consists of 486 steel planes arranged in two supermodules separated

by a 1.1 m gap. Each steel plane is an 8 m wide octagon. With the exception of the first

and last planes, they are all covered by 192 scintillator strips that run at 45 ◦ from the

vertical. The strips are arranged into eight separate modules as shown in Figure 3.7.

Each strip end is read out from both ends by 16-anode Hamamatsu PMTs (referred to

as M16). In order to reduce the number of PMTs needed, eight fibers are directed into

a single PMT pixel. This is commonly referred to as “multiplexing” or, more accurately,

“optical summing.” The strip-to-pixel patterns are different on the two ends of the strips,

Figure 3.18: The arrangement of scintillator modules into a U plane in the Far Detector (the V plane is the
same but 90◦ rotated). Eight fibers from different modules are routed to a single PMT pixel. The MUX
boxes house the PMT’s and handle the strip-to-pixel routing. The strips are read out from both ends, but
with different strip-to-pixel routing so that strips can be unambiguously “demuxed.” Figure from [131].

Figure 3.19: The arrangement modules into the four types of Near Detector scintillator planes (the steel
is the same for all planes). Every fifth plane throughout the detector is an alternating Full U or V plane.
In the upstream calorimeter region containing the fiducial volume, the intervening planes are alternating
Partial U and V planes, creating a repeating 10-plane pattern of FU-PV-PU-PV-PU-FV-PU-PV-PU-PV.
The beam is centered half-way between the coil hole and the West edge of the detector, so only this region
is instrumented in the partial planes. In the spectrometer the intervening planes are left uninstrumented.
The Near Detector strips are readout only from the left side. Figure from [131].
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in Figure 3.19. The modules were limited in size at the Far Detector by the need to bring them

underground through the existing mine elevators.

Each Far Detector plane is identical except for the alternating orientation of the scintillator strips.

The geometry of the Near Detector is somewhat more complicated as a response to the significantly

higher event rate. The Far Detector fiducial volume fills as much of the detector as possible while

still containing all the energy of each event. The first 120 of the Near Detector’s 282 planes are

called the “calorimeter.” Each of the calorimeter’s planes is instrumented with scintillator, though

only every fifth plane is completely covered with 96 strips (a “Full Plane”). Most of the planes are

“Partial Planes” where only the West side of the detector is covered with 65 strips. This cost-saving

measure was possible because the Near Detector fiducial volume does not need to be large in order to

accumulate enough events – it is a 2 m cylinder centered between the coil hole and the western edge

of the detector and is wholly contained within the first 120 planes. The Near Detector’s squat shape

and asymmetric coil hole placement allow the fiducial volume to be uninterrupted. The remaining

162 planes are called the “spectrometer” and serve only to better measure the momenta of muons

by giving them more time to range out, or at least a larger sample of points from which to measure

their curvatures.

The steel plates on which the scintillator is mounted make up the majority of the detectors –

approximately 95% by weight. The steel provides a relatively inexpensive target material for the

neutrino interactions as well as an effective absorber for muon spectroscopy. The plates are made

from low-carbon, hot-rolled steel, required to be flat to within 15 mm, and were tested to be low

in radioactivity. The steel density was measured to be 7.85 ± 0.03 g/cm3, based on samples from

various steel batches (heats). In order to be transported down the elevator, the Far Detector planes

were assembled from eight individual pieces plug-welded together. The smaller Near Detector plates

were fabricated as whole pieces. The quantity of steel needs to be known precisely both for muon

range measurements and for calculating the relative neutrino event rate which depends directly on

the relative target masses. Each of the component pieces of the Far Detector planes was measured

individually, and over the whole detector the plane masses vary with an RMS of 0.62%. The Near

Detector planes were not weighed, but ultrasound measurements put the thickness variations at no

more 0.3% (in the Far Detector, where both the mass and the thickness were sometimes measured,

they were found to correlate strongly with each other).

3.2.2 The Magnetic Field

The choice of steel as the bulk target material had an additional advantage beyond its cost – it

allowed the detectors to be magnetized. Each detector has a coil that passes through a hole cut

through the length of each detector and then around bottom of the Far Detector or the lower East-

side corner of the Near Detector. Each of the Far Detector super modules is magnetized separately
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Figure 3.20: Maps of the field strengths in the Near (left) and Far (right) Detectors. The magnetic field,
averaged over the fiducial volumes, is 1.42 T in the Far Detector and 1.28 T in the Near Detector. Figure
from [131].

using water-cooled, 190-turn coils made from Teflon-insulated stranded copper wire carrying a total

current of 15.2 kA-turn producing an average magnetic field strength of 1.42 T in the fiducial volume.

The Near Detector, because of its squashed geometry and the off-center placement of the coil hole,

requires a current of 40 kA-turn in order to produce a magnetic field comparable to Far Detector

field. The Near Detector coil has 8 turns, each of which is made up of six cold-conformed aluminum

conductors carrying current in parallel. There are no photodetectors on the coil return side of the

Near Detector in order to avoid interference from the fringe fields produced by such high currents.

Figure 3.20 shows field maps of the Near and Far Detectors determined using finite-element analysis.

The curvature of a muon track in the toroidally magnetized detector is proportional to the

ratio of the track’s charge to its momentum, q/p. The field thus makes it possible to measure the

momenta of muons even if they leave the detector before ranging out. It also makes it possible to

measure the charge of individual muons. Since neutrinos and antineutrinos produce opposite-sign

muons in charged-current interactions, neutrinos and antineutrinos can be separated event-by-event,

a unique ability among neutrino oscillation experiments. The magnetic fields in the detectors, like

the magnetic fields in the horns, can be reversed to bend either muon sign inwards or outwards.8

Negative muons from νµ interactions are bent inwards while the detector is in neutrino mode, and

positive muons from ν̄µ interactions are bent inwards while the detector is antineutrino mode. The

mode of the detectors typically matches the mode of the beam.9 Without the ability to do charge-

sign identification, the measurements made with antineutrinos described in later chapters would not

be possible.

8Muons focused inwards typically have better-measured momenta since they are more likely to range out in the
detector (range-based momentum measurements are more accurate than curvature-based one).

9The Far Detector field has always matched the beam field during beam data taking. Sizable samples of Near
Detector data were taken with a reversed field, i.e. antineutrino-mode detector with a neutrino-mode beam and vice
versa. These samples were used for cross-checks and systematic studies.
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3.2.3 Detector Readout and Data Aquisition

The end of each module has a light-tight manifold where the WLS fibers from the strips are routed

together into an optical connector. From this connector, the light is transported through clear fiber

to the photodetectors. In the Near Detector, the photodetector is a 64-anode Hamamatsu (M64)

photo-multiplier tube (PMT); in total, 194 PMTs are used. Each PMT pixel receives the light

from one scintillator strip. In the upstream calorimeter region each strip is read out individually

by the front-end electronics. Downstream, in the spectrometer, the number of front-end channels

was reduced (to save cost) by connecting four PMT anodes in parallel, electrically summing their

signals. The four strips summed together are separated by about 1 m so that muon tracking can

unambiguously assign the hit to the correct strip, which is sufficient since the spectrometer is only

used to measure muon tracks.

The Far Detector uses 145210 16-anode Hamamatsu (M16) PMTs. However, each of the 16 pixels

receives light from eight scintillator strips. The fiber routing to get the correct optical summing

(multiplexing or MUX) on each PMT pixel is handled by 484 MUX boxes, each housing three

PMTs. The hits can be unambiguously “demuxed” since each strip is read out from both ends and

the two ends have different strip-to-pixel patterns designed to minimize cross-talk.

The front-end electronics integrate, linearize, and digitize the PMT signals before passing them

on to the DAQ. At the Far Detector [132], each PMT is read out by a custom-designed, multi-

channel integrated circuit called a Viking VA chip. The VA chips are mounted on VA front-end

boards (VFB’s) which provide power, biasing controls, and a programmable ASDLite discriminator

chip which uses the PMT dynode signal for triggering digitization, usually for light levels above

0.25 PE. VA readout controllers (VARC’s) each handle the digitization, sparsification, pedestal

subtraction, and readout11 for 36 PMTs via 6 VA Mezzanine Modules (VMMs) which each handle

6 PMT’s. Since digitizing a VA chip introduces approximately 5 µs of dead time for that chip, a

coincidence of two or more dynode triggers within 400 ns from ASDLite chips in the same VARC is

required to initiate digitization.

The Near Detector has specialized, fast front-end electronics because of its much higher event

rate [133]. Each PMT pixel is attached to a MINOS Electronics for Neutrinos (MENU) circuit

board containing a Charge Integrator and Encoder (QIE) chip, a commercial flash analog-to-digital

converter (FADC), and a data buffer. The QIE is a custom integrated circuit developed at Fermilab12

which rapidly integrates charge over a wide dynamic range. It contains four independent copies of

the integrating circuits to allow dead-timeless operation when triggered externally. Even when

accumulating cosmic ray data, for which there is no external trigger, each PMT has a dead time

10There are an additional 64 PMTs for the cosmic Veto Shield.
11Since speed is not critical at the Far Detector these process are typically handled by commercially-available

components.
12QIE chips are also used by the CDF and KTEV experiments.
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Figure 3.21: The WLS fibers from multiple strips are grouped together and routed to a multi-pixel photo-
multiplier tube. In the Far Detector eight strips are routed to each of 16 PMT pixels. In the Near Detector
each of the 64 PMT pixels receives the light from only a single strip. Figures from [131].
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of only 0.5%. MINOS Near Detector Electronics Readout (MINDER) boards each readout and

timestamp 16 MENU’s before passing the digitized data on to data acquisition.

The data acquisition system (DAQ) reads out the front-end electronics continuously at both

detectors, but only writes the data to disk if certain trigger conditions are met. The Near Detector

electronics are triggered directly by the beam spill signal at Fermilab and all the data during a

100 µs window around the beam spill is recorded. The Far Detector cannot be triggered directly

since it is not at Fermilab but instead receives the GPS timestamp for the beam spill recorded at

the Near Detector via the internet. The Far Detector DAQ has several seconds of buffering capacity

so the “remote spill trigger” has time to arrive. Both detectors also have signal-based triggers (for

example, the “plane trigger” requires dynode triggers on four out of five consecutive planes) for

cosmic ray and atmospheric neutrino interactions that occur outside the beam spill as well as other,

more specialized triggers for background monitoring, debugging, and calibration.

More details about the detector design and construction, the readout electronics, and the cali-

bration described in the next section can be found in [131].

3.3 Calibration

MINOS uses a multi-step calibration chain to convert the raw detector pulse height to a fully-

corrected signal which is consistent across time, position in the detector, and which detector the

signal was in. The system uses charge injection and light injection, which measure the photodetectors

and readout systems, cosmic ray muons, which measure the scintillator response, and bench-top

measurements of the WLS fiber. The full chain can be broken down as follows:

Qcorr = Qraw(s, x, t, d) × DPMT(d, t) × L(d, s,Qraw)

× Dscint(d, t) × S(d, s, t) × A(d, s, x) × M(d)
(3.3)

where s is the strip that was hit, x is the position along that strip, t is the time of the hit, and d is

the detector where the hit occurred (Near, Far, CalDet). Qraw is the raw pulse height from the strip,

Qcorr is the fully corrected signal that is passed on to reconstruction, and the remaining terms are

explained below. The corrected pulse heights are then used to reconstruct physics objects (tracks

and showers) in which the pulse heights become physical energies.

PMT and Electronics Drift DPMT(d, t)

The ‘drift’ is the change in PMT and electronics gain over time. Short-term vari-

ations are generally related to changes in local temperature and can be eliminated

with good environmental control. There are also long-term changes that cannot be

removed so easily, related to seasonal environmental changes and component aging,
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amounting to no more than a 4% annual change in the overall detector gain.

The PMT and electronics gain is calibrated using a Light Injection (LI) system

that pulses UV LEDs to illuminate the each WLS fiber 300 times per hour in the

Far Detector and 1000 times per hour in the Near Detector. The UV LEDs simulate

the light from the scintillator, but in a controlled and reproducible fashion. This LI

data is collated at each detector on a monthly basis to produce an average response

per photoelectron per channel, which enters the signal correction as DPMT(d, t).

Linearity L(d, s,Qraw)

The goal of the linearity calibration is to correct the output of the electronics so

that it is linearly related to the true illumination. In the Near Detector, each inte-

grator/digitizer is calibrated by injecting known amounts of charge and observing

the output signals. This electronics-only linearity correction is applied directly in

the front-end electronics.

The Far Detector electronics, as well as the PMTs at both detectors, also show

5%−10% non-linearity starting above about 100 photoelectrons. This non-linearity

is also corrected using the LI system. Monthly, an extend light injection run is per-

formed where each strip end is pulsed 1000 times at a wide range of light levels,

allowing the PMT/electronics response as function of true illumination to be mea-

sured. This gain is then linearized offline.

Scintillator Drift Dscint(d, t)

Like the electronics and photodetectors, the scintillator response changes as a func-

tion of temperature and degrades as it ages. Aging reduces the light level by about

2% annually and larger short-term changes have been shown to correlate well with

temperature variations. The calibration of the scintillator drift is performed using

the large sample of through-going muons accumulated at each detector. The total

pulse-height per plane deposited by these muons is calculated each day. Though

the total amount of energy deposited by these muons varies with zenith angle and is

different between the detectors, the amount of energy deposited at any one detector

is expected to be constant over time. The correction, then, is calculated by com-

paring the median response each day to the median response at t0, the beginning

of the experiment:

Dscint(d, t) =
Median response(d, t0)

Median response(d, t)
. (3.4)

Strip-to-Strip Uniformity S(d, s, t)

The detector response also varies strip-by-strip versus time. Individual strip ends
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can vary from the detector average by as much as 30%. These effects are also

calibrated out using cosmic ray muon tracks. The mean light level at each strip

end due to cosmic ray muons is measured after linearization. Hits are corrected for

known effects from attenuation (as the light travels through the WLS fiber) and the

path-length of the muon through the scintillator so that each strip is calibrated for

an idealized muon travelling at normal incidence through the center of the strip. The

strip-to-strip calibration is then calculated relative to the mean detector response

S(d, s, t) =
Mean detector response(d, t)

Mean strip end response(d, s, t)
. (3.5)

Attenuation A(d, s, x)

Hits that occur close to the edges of the detector will have a higher light level

than hits deep in the interior due to attenuation along the WLS fiber. In principle,

cosmic ray muons could be used for the attenuation correction, as well, but it is more

accurate to use the measurements taken at various position along each scintillator

strip at the production factory using a known γ source. These ‘module mapper’

data were then fit to a double exponential in each strip

A(d, s, x) = Ad,s1 e−x/L
d,s
1 +Ad,s2 e−x/L

d,s
2 (3.6)

where x is the length along the strip and Ld,s1 , Ld,s2 stand for the two attenuation

lengths. The attenuation correction was subsequently checked with through-going

muons and found to be consistent to 4%.

Inter-detector M(d)

All the previous calibrations have served to produce temporally and spatially con-

sistent data at each of the three detectors. In order to normalize the energy scales

of the Near and Far Detectors and CalDet to each other, the stopping cosmic ray

muon sample was used. Only a small fraction of all cosmic ray muons stop in the

detectors (0.3% in the Far Detector), but there are enough cosmic rays that this is

a sufficient sample. Stopping muons are used since they produce well-understood

energy depositions, especially between 0.5 GeV and 1.1 GeV where dE/dx is basi-

cally constant. The method of using only the portion of the muon track when it

was in that energy range is called the “track window technique” and reduces a 2%

uncertainty in the track’s end position to a 0.2% uncertainty in the energy depo-

sition. Using the stopping muon sample the inter-detector calorimetric responses

were calibrated to a consistency of better than 2%.
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Absolute Track and Shower Energy

Once the detectors are all calibrated to give the same hit-to-hit response, the overall

response to physics objects needs to be evaluated. These absolute track and shower

energy scales were determined by measurements with CalDet while it was exposed

to various test beams at CERN. Data was taken with electrons, pions, muons, and

protons of both charge signs with momenta ranging from 200 MeV to 10 GeV, with

other detectors in the beamline to identify the particles. Thus, the particle species13,

charge, and momenta were all known a priori before the event was observed in the

detector. The data were then compared to the GEANT3 detector simulation.

The predicted range of stopping muons was modeled to better than 3%, thus

benchmarking the accuracy of the GEANT3 simulation and the GEANT3 swimmer

used to reconstruct track energies. The detector response to electrons agreed to

better than 2%. The response to pion and proton showers guided the choice of

hadronic interaction model for the detector (GCALOR [134]) and showed that the

Monte Carlo could reproduce the measured hadronic showers to better than 6% at

all energies. The reconstruction of track and shower energy is discussed in greater

detail in Section 3.4.

3.4 Reconstruction

The MINOS reconstruction is a C++ based framework that takes a snapshot of digitized (or simu-

lated) detector readouts and determines the visible energy and other properties of the products of

the underlying neutrino interaction.

The input snapshot is called a ‘snarl’ and, in the Near Detector, typically contains several neutrino

interactions. Each snarl corresponds to a beam-spill window or other trigger. The first step is to

separate the individual neutrino interactions both spatially and temporally, allowing overlapping or

simultaneous events to be distinguished. Figure 3.22 shows an example Near Detector snarl with

several events distributed in space and time. In principle, slicing is applied to the Far Detector data,

as well, but multiple neutrino interactions during a single beam spill are rare.

3.4.1 Event topologies

MINOS beam events fall into four categories: charged current muon neutrinos (CCνµ), charged

current muon antineutrinos (CCν̄µ), charged current electron (anti)neutrinos (CCνe), and neutral

currents (NC). There are also ντ and ν̄τ events, but very few and they are indistinguishable from

13The upstream detectors could not distinguish pions and muons, but the particles produce very topologically
distinct events in the detector so a posteriori separation was not a problem.
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Figure 3.15: One beam spill as observed in the Near Detector. For clarity a spill containing
a smaller than average number of neutrino interactions was chosen. The left plot shows the
horizontal and vertical position of track hits. The right plot shows the detector signal as a
function of time, where the bin width is about ten times larger than the detector’s timing
resolution. Image obtained from [83].

pulse-height hits observed in the data whose exact origin remains unknown. The solution

is to remove most crosstalk hits by applying a pulse-height cut to the selection.

3.4.3 MINOS Reconstruction

Before being analyzed, both the data and the simulation are processed through the MINOS

event reconstruction. The reconstruction is a C++ based framework whose goal is to

estimate the visible energy of the different neutrino interactions and to provide a distinct

set of quantities that describe each event. The input to the reconstruction is the digitized

readout recorded during a beam spill or during a cosmic ray event. This information is

referred to as a “snarl.”

A snarl can contain multiple events, especially if it is a Near Detector snarl. The first

step in the reconstruction is to divide the activity in the detector into one or more events.

Figure 3.15 shows the example of a beam spill as observed in the Near Detector. Hits from

a single interaction are identified using timing and spatial information. In the Far Detector

the rate is much lower, and there is rarely more than one event per beam spill.

A track-finding algorithm is then applied to each event. The algorithm operates by

finding small track-like segments and then, when possible, joining them to form a “seed

track.” The seed track is then iteratively passed through a Kalman filter, which relies on

Figure 3.22: An example of a Near Detector snarl with several neutrino event distributed in space (left) and
time (right). Figure taken from [135].

neutral currents in the MINOS detectors. As described in Section 2.2.4, CCνµ and CCν̄µ events

are characterized by long, curving muon tracks (µ+ for ν̄µ and µ− for νµ) with a hadronic shower

at the interaction vertex. CCνµ and CCν̄µ events can be distinguished by the direction the track

curves in the detector magnetic field. While running with neutrino-mode beam, both detector fields

are typically tuned to bend µ− inwards and µ+ outwards, and vice versa during antineutrino-mode

beam. The detector fields are chosen this way because tracks bent inwards are less likely to exit the

detector, allowing the more accurate range momentum measurement to be used.

CCνe and NC interactions produce events without muon tracks, though they sometimes still have

short reconstructed tracks. CCνe events are characterized by compact electromagnetic showers and

NC events are characterized by more diffuse hadronic showers, but distinguishing between them is

not necessary for either antineutrino analysis. Specific analyses have been performed for both the

CCνe sample [136] and the NC sample [137], but in the analyses presented in this thesis the events

without muon tracks are background. Given the predominance of NC events, the CCνe events are

wrapped into the NC sample. Figure 3.23 shows event displays from a CCνµ, a CCν̄µ, and an NC

interaction.

3.4.2 Tracks

Once the snarl has been split up into events, a track finder searches for small track-like segments –

several hits in an approximate line across several planes. The track finder then joins these segments

together to produce a ‘seed track.’ The seed track is then fit using a multi-pass Kalman filter [138].

The filter moves forwards and backwards along the track, attempting to estimate the state (e.g.

momentum) of the underlying muon at each point along the track, including the effects of noise and

multiple scattering in addition to the expected curvature in the magnetic field. It makes the final

decision on whether or not a particular hit is part of the track.
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Figure 3.23: The three event topologies relevant to the antineutrino analysis: CCνµ (left), CCν̄µ (center),
and NC (right). The top row shows the Feynman diagram and the bottom row shows a representative
simulated event in one view (i.e. only U planes). CC events are characterized by long muon tracks which
curve in opposite directions for CCνµ and CCν̄µ. NC events do not have true muon tracks, but can have
fake tracks which make them a background at low energy. The green points are hits with light levels below
two photo-electrons and are not included in the analysis.

After two passes with the filter, the fitted momentum state (or more precisely, charge-to-

momentum ratio) of the particle’s first hit is curvature-based estimate of the track’s initial mo-

mentum when created in the detector. Other properties of the track fitting, for example how well

the track’s curvature (momentum) was measured, are also recorded. The curvature of the track

is proportional to the ratio of its charge to its momentum, q/p. At 3 GeV the resolution of this

measurement is 11%.

If the track ends in the detector, a second, more accurate measurement of the momentum is made

using the range of the track through the plastic and steel. At 3 GeV, the momentum measurement

by range has a resolution of 4.6%. It is used for all tracks that do not exit the detector or end

in the uninstrumented coil hole. Muons with energies between 10 MeV and 10 GeV lose energy

almost exclusively through ionization (see Figure 27.1 on page 286 in [35]) and are well described

by the Bethe-Bloch equation [35, 139]. This is precisely the energy regime relevant to oscillations in

MINOS. In practice, the energy is measured by swimming a muon backwards along the track using

the GEANT3 simulation package [140] and progressively adding back in the energy that would have

been lost in each steel and scintillator plane.

CalDet confirmed the accuracy of the Bethe-Bloch equation as tabulated by Groom [139] with
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material-specific density effects tabulated by Sternheimer [141, 142]. Modifying the GEANT3 sim-

ulation to use the Groom tabulation produced data-MC agreement at better than 2% [131, 143].

The remaining 2% is taken as a systematic uncertainty in the analysis. Since 95% of the energy loss

occurs in the steel planes, each of which is nominally 1.46 radiation lengths thick, the amount of

steel the muon passes through must also be known precisely. The density of the steel was measured

to an accuracy of 0.3% and the Near and Far Detector plane thicknesses were measured to 0.1%14

and 0.2%15 respectively.

The curvature-based measurement of the track momentum was calibrated by comparison with

the range-based measurement. The two energy measurements were compared for stopping tracks,

and it was found that the curvature-based measurement generally agreed with the range-based

measurement to within 1%. This 1% is conservatively added linearly to the 2% uncertainty from

the range measurement, leading to a total uncertainty of 3%.

3.4.3 Showers

Once the tracks have been identified, the remaining hits in proximity to one another are grouped

together into showers. Hits that are part of a track, but with more energy than the muon would have

deposited, have the track portion of the energy subtracted before being included in a shower. Unlike

the muon, whose energy is measured topologically, the shower energy is measured calorimetrically.

The MINOS detectors are too coarse (each ‘pixel’ is 4 cm across and separated longitudinally by

5 cm of steel and air) to reliably distinguish the component particles in the shower. Instead, the

energy of the shower is reconstructed calorimetrically: it is estimated based on the total energy

deposited by all of its constituent hits.

The absolute shower energy scale is also calibrated using the test beams at the calibration

detector. This detector provided the opportunity to measure the detector response to hadronic

particles of known energy. The electron shower data agreed with the GEANT3 simulation to less

than 2%. The hadronic shower measurements showed data-MC agreement of 6% and helped guide

the choice of GCALOR [134] as the hadronic interaction model in the simulation.

The hadronic and electromagnetic shower energy resolutions can be adequately modeled by the

simulation, and they are parameterized as 56%/
√
E ⊕ 2% for hadrons and 21.4%/

√
E ⊕ 4% for

electrons, where E is the particle’s energy in GeV.

14Measured by ultrasound
15Measured by weight
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3.5 Simulation

The two-detector design reduces, but does not eliminate, the need for simulation. The MINOS

data is simulated in a multi-stage process that begins with the Flugg beam simulation described in

Section 3.1.4. Neutrinos are sampled from the flux simulation, using rejection-sampling to account

for the importance weighting. They are traced through models of the Near and Far detector halls,

allowing the neutrinos to interact both in the detector and in the surrounding material.

The neutrino interactions are generated by the NEUGEN [144] program. NEUGEN simulates

quasi-elastic and inelastic neutrino interactions at a wide range of energies, from 100 MeV to

100 GeV. It simulates the hadronization process (described in Section 2.2.4) with the AGKY model

[145], which uses a combination of PYTHIA/JETSET [146] at high hadronic invariant mass and the

KNO phenomenological model [147] at low invariant mass, with a smooth transition between the

two models. NEUGEN also includes the INTRANUKE [148] model of intranuclear rescattering to

account for the interactions of the hadronic particles as they leave the nucleus.

Once the products of the interaction leave the nucleus, their simulation is taken over by GMINOS

which includes a detailed geometric model of the detector written in GEANT3 [140]. It also includes

a detailed model of the magnetic field created using finite element analysis and measured B-H curves

from steel samples. GMINOS transports the particles through the detector geometry, recording their

strip-by-strip energy depositions as the particles lose energy into the steel and scintillator. At this

stage, multiple neutrino interactions, both from in the detector and in the surrounding material, are

overlaid into a single simulated snapshot in time to reflect the high Near Detector event rate.

Once the energies have been deposited on scintillator strips, the C++ based PhotonTransport

program takes over. PhotonTransport generates photons in the scintillator based on the GMINOS

energy depositions, transports those photons into the WLS fiber and onto the PMT cathode where

they are converted into photoelectrons. It includes the detailed behavior of the PMTs and electronics,

including non-linearity, noise, cross-talk, and triggering. In order to model the real-world detector

as well as possible, the PhotonTransport simulation is ‘decalibrated’ by applying the measured

calibration constants in reverse. Thus the simulation includes the best knowledge available on light-

levels, attenuation, non-linearity and gains. Each simulated run is given a fictitious date from some

time during actual data taking and calibration constants from that time are used. Later, when

calibrations are re-applied, each Monte Carlo run is re-calibrated using the same date that was used

to produce it.

At this stage, the simulation is as similar to the real data as possible and both are handled in

the same way during reconstruction.
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Chapter 4

An Oscillation Analysis in Brief

All oscillation analyses in MINOS follow the same basic structure. Everything begins with a signal

in the detector: light in the scintillator strips. The light is amplified by photomultiplier tubes,

digitized by the front-end electronics, and becomes a single ‘hit.’ The reconstruction algorithm then

groups many hits together in space and time to produce ‘tracks’ (typically muons) and ‘showers.’

Tracks and showers that share a vertex are then grouped together into a neutrino ‘event.’

There are a number of classes of beam-induced events that occur in the detectors: charged-

current (CC) νµ and ν̄µ, neutral current (NC), CC νe and ν̄e (both inherent in the beam and a

possible appearance signal), and CC ντ and ν̄τ (only at the Far Detector).1 Each oscillation analysis

is focused on looking for changes between the event samples in the the Near and Far Detectors. The

first step in any analysis, then, is to select as pure a sample as possible of the event class of interest.

Here, the signal sample is CC ν̄µ’s, whose main backgrounds are CC νµ’s and NC’s.

Once a sample has been selected (many more details on that process are given in Sections 5.1 and

6.1), the event energies are required. The energy of a CC neutrino event is estimated by summing

the shower energy, measured via calorimetry, and the track energy, measured via the range the muon

travels or the amount it curves in the detector (more details are given in Section 3.4). These energy

measurements are collected together to form Near and Far Detector energy spectra. While closely

related, these two spectra are not identical. In addition to having lower statistics because of being

further away from the neutrino source, the Far Detector also has spectral differences related to a

combination of the geometry of the beamline and the kinematics of the meson decays that produce

the neutrinos (see Section 5.3).

The Monte Carlo simulation is used to account for these Near-to-Far differences, converting

the measured Near Detector spectrum to a ‘prediction’ of what the Far Detector spectrum would

look like with any arbitrary choice of oscillation parameters. This process is called extrapolation.

1All these event categories are also produced by neutrinos produced by cosmic rays in the atmosphere, but these
can be effectively eliminated by selecting only events in-time with the beam ‘spill triggers,’ which account for less
than 0.01% of the Far Detector live time. The average rate of atmospheric neutrino interactions is less than half that
of beam neutrinos.
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Since these Far Detector predictions are based on the Near Detector spectrum, cross section and

flux systematics largely cancel.2 Take, for example, a systematic error in the simulation’s neutrino

interaction cross section; say it is high by 10%. With only one detector there would appear to be

a 10% deficit of neutrinos. With two detectors, however, the simulation is only required to convert

the measured Near Detector data into a Far Detector prediction. Since neutrinos interact in both

detectors using the same cross section, they will both be 10% high but the relative number of events

expected at the Far Detector for a given number of events in the Near Detector remains unchanged.

The systematic has been ‘cancelled out’ in the extrapolation process – this is the power of the

two-detector design.

Since the prediction can be produced for any arbitrary set of oscillation parameters, those param-

eters can be varied to find the values that best fit the data. In practice, a search is performed over

the possible oscillation parameters to find the ones that maximize the likelihood of the observed data

spectrum given the prediction. Then, starting from the best fit parameters, a two-dimensional confi-

dence interval (contour) can be drawn showing how the data constrain the values of the parameters.

For more details, see Sections 5.6, 5.7, and 6.5.

2Given the spectral differences mentioned above, the systematics do not cancel completely, but their effects can
be estimated and are small. See Sections 5.4 and 6.3.
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Chapter 5

Antineutrinos in a Neutrino Beam

The first 7.2 × 1020 POT of data was taken with the NuMI beamline running in neutrino mode

as described in Section 3.1.1. However, the neutrino-mode beam has a small (approximately 7%)

component of antineutrinos. Two measurements were made with the antineutrinos from the first

3.2 × 1020 POT of running: one looking for antineutrino oscillations via disappearance, and one

looking for neutrino-to-antineutrino transitions via antineutrino appearance.1 The disappearance

analysis measures the |∆m2
atm| and sin2(2θ̄23) parameters from the oscillation survival probability:

P (ν̄µ → ν̄µ) = 1− sin2(2θ̄23) sin2

(
∆m2

atm

L

4E

)
(5.1)

Figure 5.1: Simulated Far Detector reconstructed energy spectrum showing the effect of transitions with
α = 0.12 and oscillations with |∆m2

atm| = 5.65× 10−3eV2 and sin2(2θ̄23) = 1. The values chosen correspond
to the lowest parameter values with measurable effects at 99% CL.

1I performed the neutrino-to-antineutrino transition analysis.
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Figure 5.2: The pT vs. pZ distribution of the π± parents that produce neutrinos (left) and antineutrinos
(right) at the Near Detector when the beam is in low-energy neutrino-mode mode. The unfocused component
has a broad range of pZ , and hence total momentum, producing the diffuse high-energy tail.

where L is the baseline over which the oscillations occur and E is the energy of the neutrino. The

appearance analysis constrains the possibility that some fraction, α, of the neutrinos that MINOS

has observed to disappear are actually transitioning to antineutrinos:

P (νµ → ν̄µ) = α sin2(2θ23) sin2

(
∆m2

atm

L

4E

)
(5.2)

which would be visible as an anomalous low-energy peak in the antineutrino spectrum. A simulated

example of each of these signals is shown in Figure 5.1.

Antineutrinos are produced in the decays of pions produced by colliding primary protons with

the graphite target.

p+ C→ π− + X (5.3)

π− → µ− + ν̄µ (5.4)

The antineutrinos in the neutrino-mode beam come primarily from low-pT pions leaving the target

headed directly down the axis of the beamline and thus avoid being defocused. These “neck-to-neck”

pions, so-called since they pass directly through the necks of both horns, are unaffected by the horn

magnetic fields. Without the momentum-selecting benefit of focusing, the antineutrinos are left with

a broader spectrum with a higher peak energy than the neutrinos (7 GeV instead of 3 GeV). A

comparison of the neutrino and antineutrino parents’ pT −pZ distributions can be seen in Figure 5.2.
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5.1 Selection

The first step in the analysis of the antineutrinos is to select as large and pure a sample of them

as possible. Of course, the antineutrino itself cannot be directly observed, so its properties must be

inferred from the outgoing remnants of the antineutrino’s collision with a nucleus in the detector.

Only charged current (CC) interactions are desired in the analysis since the neutrino flavor can be

determined from the flavor of the outgoing lepton,

ν̄µ +N → µ+ + hadrons. (5.5)

Selecting the antineutrino component of the neutrino-mode beam would be impossible if not for

MINOS’s magnetized detectors. The separation of neutrinos and antineutrinos relies on the fact

that the two charged current interactions produce opposite sign outgoing leptons: ν̄µ → µ+ and

νµ → µ− (the samples are sometimes referred to as positive charge, PQ, and negative charge, NQ,

respectively). The toroidal magnetic fields (approximately 1.4 T) in the two detectors cause the

outgoing muons to curve in different directions depending on their charge. When the detectors

are in neutrino mode,2 negative muons curve inwards and positive muons curve outwards. The

reconstruction algorithm measures the track’s curvature, which is proportional to the ratio of the

track’s charge/momentum (q/p).

There are two main backgrounds to the CC ν̄µ sample: CC νµ interactions whose charge has

been mis-reconstructed (sometimes called ‘wrong sign’ or WS),

νµ +N → µ−(mis-id as µ+) + hadrons (5.6)

or neutral current (NC) interactions of any neutrino species which have a shower element that fakes

a muon track,

νx +N → νx + fake muon + hadrons. (5.7)

The first selection step is to apply basic “preselection” cuts:

• The beam and detector must have been in good operating condition.

• The event must occur during the beam spill, greatly suppressing atmospheric neu-

trinos and cosmic rays.

• The event vertex must occur in a fiducial volume separated from the edges of the

detector, ensuring that all the energy of the event is contained in the detector and

can be measured.

2The detector mode always corresponds to the beam mode for the data in this thesis, though some data were
taken with the Near Detector field reversed relative to the horn fields for systematics studies.
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Figure 5.4: Charge-sign selection variables (q/p) / σq/p and |Relative Angle − π| are shown for the Near
Detector in data (black points) and simulation (total in red, background in cyan). The flux uncertainty
on the Monte Carlo is represented by the shaded red bars. In each plot, all other selection cuts have been
applied. These selectors keep only well-measured positive tracks.

• The event must have a reconstructed track, eliminating most neutral current events.

The next step in selecting antineutrinos is to keep only events with positive reconstructed charge

(the PQ sample). However, the antineutrino component is so small that even this sample is domi-

nated by backgrounds (see Figure 5.3). The backgrounds are split evenly between neutral currents

and wrong-sign neutrinos. The positive sample is at least half background at all energies, and the

contamination gets worse below 7 GeV.

An additional selection step is applied for each of these backgrounds. Two cuts are made to

address the charge sign, and a third cut is made on a likelihood-based CC/NC separator. The two

charge-sign selection variables are the ratio of the track’s curvature (q/p) to the uncertainty on that
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Figure 5.5: The three variables that form the PDFs in the DpID CC/NC separator: the track length, the
fraction of the event energy in the track, and the mean energy deposited per plane are shown for the Near
Detector in data (black points) and simulation (total in red, background in cyan). The flux uncertainty on
the Monte Carlo is represented by the shaded red bars. Each shows some separation between the background
and the bulk of the sample.

curvature (σq/p) and the relative angle between the straight-line projections of the first few hits and

the last few hits of the track. The distributions of these two variables are shown in Figure 5.4.

The CC/NC separation parameter, called DpID, is built up from 1-dimensional PDFs of three

variables that each have some power to distinguish charged current events from neutral currents.

Track length

True muon tracks tend to be longer (i.e. cross more planes) than the tracks of

particles coming from the hadronic shower.

Track energy fraction

The fraction of the event energy that is in the track (lepton) as opposed to the

shower (hadrons). It is related to the kinematic y (inelasticity).

Track energy per plane

The amount of energy deposited per plane of the track. It is related to dE/dx which

can distinguish true muons (typically minimum-ionizing) from the tracks formed by

hadronic shower components.

These three variables are shown in Near Detector data and simulation in Figure 5.5. The distribution

of the separation parameter, again in Near Detector data and simulation, is shown in Figure 5.6.
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and total Monte Carlo with flux uncertainty (red line and shaded bars). Also shown is the neutral current
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separator has some power to reject the wrong-sign background in addition to the neutral current background
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This figure also shows the two individual background components. In addition to removing neutral

current events, DpID is also effective at removing many wrong-sign events because one of its input

PDFs is related to inelasticity (kinematic y) and neutrino interactions typically have a higher y than

antineutrinos.

Figure 5.7 shows the performance of the antineutrino selection in purity and efficiency3 as well

as the purity in the positive sample before selection (as shown in Figure 5.3). The CC/NC separator

and the two selection cuts on charge-sign dramatically improve the purity of the sample from 34%

to 97% while keeping the overall efficiency at 82% in the Far Detector.

5.2 Near Detector Spectrum

Now that a pure sample of antineutrinos has been obtained, the next step is to build up an energy

spectrum from the selected events. The energy of each event is reconstructed in two parts: the

muon track and the hadronic shower. For tracks that end within the detector (contained tracks),

the range of the track is the best measure of its energy. If the track leaves the detector its energy

is instead measured by the amount the track curves in the magnetic field. The shower energy is

measured calorimetrically: it is the sum of the energy deposited into the scintillator strips for all

non-track hits in the event. For more details see Section 3.4. The reconstructed track and shower

energy distributions in the Near Detector are shown in Figure 5.8.

Combining the track and shower energy for each event, the full energy spectrum can be built

up at the Near and Far Detectors. The selected antineutrino energy spectrum at the Near Detector

in the neutrino-mode beam, in data and Monte Carlo, can be seen in Figure 5.9, along with the

flux uncertainty on the Monte Carlo. Thanks to MINOS’s two-detector design, this systematic

uncertainty on the flux as well as the uncertainty from antineutrino cross-sections cancel in the
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Figure 5.8: Reconstructed momenta of µ+ tracks (left) and reconstructed shower energy (right) in the Near
Detector. The red histogram represents the Monte Carlo expectation with the flux error, the blue histogram
represents the total (charged and neutral current) background with the background uncertainty. Black
points represent data.

3Calculated from simulation and taken relative to all true interactions in the fiducial volume.
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Figure 5.9: The selected ν̄µ energy spectrum is shown in the Near Detector in data (black points) and
simulation (total in red, background in cyan). The flux uncertainty on the Monte Carlo is represented by
the shaded red bars.

extrapolation to the Far Detector (see Section 5.3 for more details on extrapolation). The figure

illustrates that the amount of background in the final spectrum is relatively small, approximately

3%.

Note that the simulation shown has been reweighted to account for the mismodeling of hadronic

interactions in the NuMI target using a fit to multiple beam running conditions. While necessary to

understand the Near Detector distributions, it has little bearing on the oscillation result since flux

uncertainties cancel in the extrapolation. See Section 3.1.4 for more details on the reweighting.

5.3 Extrapolation (the Beam Matrix)

The MINOS experiment was designed with two detectors in order to reduce the effect of systematic

uncertainties. Many systematics, such as the neutrino flux, the neutrino cross section, and the

modeling of the hadronic energy, affect both detectors in the same way, allowing them to effectively

“cancel out.” For example, imagine the actual neutrino flux were 10% higher than simulated. With

only one detector those 10% more events at the Far Detector would change the apparent oscillation

probability. With two detectors, however, that flux increase would increase the number of events at

the Near Detector as well. So, if we predict the Far Detector based on the Near Detector that 10%

increase would be expected and thus not affect the measured oscillation probability.

There is an important caveat though. The example above relied on the change in the flux having

the same effect at both detectors. This comes from an implicit assumption that both detectors see



Extrapolation (the Beam Matrix) 83

θf

To far
detector

Decay Pipe

!
+

!
+
(soft)

(stiff)

θn

Target

ND

Figure 1: A diagram of neutrino parents in the NuMI decay pipe, illustrating
the different solid angles subtended by the near and far detectors at the parent
decay point. (Figure taken from [10].)

Figure 2: Simulated true neutrino energy spectra in the near (left) and far
(right) detectors. Parents responsible for producing neutrinos in the hatched
near detector energy bins produce a different neutrino energy distribution
in the far detector, shown by the corresponding hatching. (Figure taken
from [4].)

Figure 2 illustrates the effect of parent decay kinematics on the near and
far detector energy spectra. It highlights how parents responsible for certain
near detector neutrino energies produce a different far detector neutrino en-
ergy distribution. The effect is most pronounced for higher energy parents
(and therefore higher energy neutrinos) which typically travel further along
the decay pipe before decaying: the neutrinos are then produced closer to
the near detector, allowing a wider range of contributing decay angles. (This
effect outweighs the increased Lorentz boost of the higher energy parents,
which narrows the range of decay angles in the laboratory frame.) The effect
primarily lowers the typical energy of a neutrino at the near detector in com-
parison to the far as the parents are travelling predominantly towards the far

5

Figure 5.10: Diagram of the neutrino parents in the NuMI decay pipe. A parent will typically have a wide
range of neutrino decay angles that reach the Near Detector and a very narrow range that will reach the
Far Detector.

an identical flux. However, for MINOS this is not quite true due to the kinematics of the decays

that produce the neutrinos. For a given parent, the energy of the daughter neutrino in the parent’s

rest frame is fixed:

E∗ν =
m2
p −m2

µ

2mp
(5.8)

where mp is the mass of the parent (p = π±,K±), mµ is the mass of the muon and the neutrino

mass is negligible. However, the energy of the neutrino in the lab frame depends on the relative

angle, θ, between the parent’s direction of travel and the neutrino’s:

Eν =
E∗ν

γp (1− βp cos θ)
(5.9)

where γp is the parent’s Lorentz factor and βp is its velocity. The flux is also a function of angle.

While the parent emits the neutrino isotropically in its rest frame, once boosted to the lab frame

the flux becomes angle-dependent:

dN

d cos θ
=

1

2γ2
p (1− βp cos θ)

2 (5.10)

where again γp is the parent’s Lorentz factor and βp is its velocity. The derivations of these formulas

can be found in Appendix A.

The Far Detector is sufficiently distant so that for a given parent, there is only one narrow range

of angles that will produce a neutrino that will reach the Far Detector, uniquely determining the

neutrino energy from that parent. The Near Detector, however, covers a much wider solid angle since

it is significantly closer to the end of the decay pipe. Consequently, this same parent can produce

neutrinos at a range of energies in the Near Detector (see Figure 5.10). The effect on the spectrum

can be seen in Figure 5.11: neutrinos of a particular energy in the Near Detector (shaded regions

on the left) correspond to a range of parent energies with different decay angles which will produce

a range of energies at the Far Detector (shaded regions on the right). The Far Detector distribution

gets wider at higher energies since higher energy parents tend to get further down the decay pipe

(i.e. closer to the Near Detector) before decaying, enhancing the solid-angle effect (and outweighing
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Figure 5.11: The relationship between the energies of ν̄µ events observed in the Near Detector with those
observed in the Far Detector. The colored regions on the left and right show the differing neutrino energy
distributions in the detectors for neutrinos coming from the same parents.

the increased Lorentz boost which tends to narrow the outgoing neutrino energy distribution). Since

the larger angles tend to have lower energies, events at the Near Detector tend to shift downward

into the peak, leading to a more peaked spectrum at the Near Detector than at the Far Detector.

In order to get a correct prediction of the Far Detector given the Near Detector spectrum, the

Monte Carlo is used to create a “beam matrix” that relates the Near Detector spectrum to the Far

Detector spectrum.4 The rows each correspond to a bin of Far Detector true neutrino energy and

the columns each correspond to a bin of Near Detector true neutrino energy. Each whole column

is effectively the Far Detector neutrino energy spectrum that would be produced by the collection

of parents that produced neutrinos at the Near Detector energy to which that column corresponds.

Each column is normalized to one Near-Detector neutrino so that by matrix multiplying with the

Near Detector spectrum the Far Detector spectrum is obtained. The matrix for antineutrinos in the

neutrino-mode beam is illustrated in Figure 5.12.

The matrix is populated by taking many simulated neutrino parents and forcing them to decay

towards both the Near Detector5 and the Far Detector. The corresponding neutrino energies and the

probabilities of those decay directions are calculated. The matrix is then filled in the element defined

by the two detector energies with a weight defined by the probability of that parent producing a

neutrino at each detector. Once the full matrix is filled each column is normalized to a single Near

Detector neutrino as described above.

Since the matrix is based on simulation, it assumes that the Near and Far Detector spectra are in

true neutrino energy, are perfectly pure, and that events are selected perfectly. In reality, of course,

there are backgrounds and selection efficiencies, and only the reconstructed visible energy of each

4I played a key role in adapting the extrapolation, designed for the neutrino analysis, to antineutrinos.
5Locations within the Near Detector are selected randomly in three dimensions, the same procedure used in

generating the Near Detector simulation. This more accurately samples the range of decay angles that reach the Near
Detector.
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Figure 5.12: The beam matrix for ν̄µ’s in the neutrino-mode beam. Each cell relates a Far Detector energy
bin to a Near Detector one. The content of each cell represents the mean number of ν̄µ events expected in
the Far Detector for one event in the Near Detector. This distribution is treated as a matrix to relate the
energies measured in the Near Detector to those expected in the Far Detector.

event is available. Each of these effects (purity, efficiency, visible energy) is corrected using the full

detector Monte Carlo, both at the Near Detector and at the Far Detector. Backgrounds and efficiency

are corrected by multiplying or dividing the appropriate histogram. The reconstructed visible energy

is converted to corrected (‘true’) neutrino energy by matrix-multiplying a two-dimensional histogram

which relates reconstructed and true energies in the Monte Carlo. This way the energy spectrum of

selected antineutrinos in the Near Detector can be transformed into the neutrino flux × cross section

in neutrino energy at the Near Detector. This Near Detector flux × cross section is multiplied by

the beam matrix to produce a corresponding Far Detector flux × cross section in neutrino energy.

The corrections applied for the Near Detector, but now based on the Far Detector simulation, are

then applied in reverse: the spectrum is converted back to reconstructed energy by multiplying

with a true-to-visible matrix, the spectrum is reduced by multiplying the selection efficiency, and

data-based background predictions are added, finally resulting in a prediction of the Far Detector

spectrum given the spectrum observed in the Near Detector without any oscillations. The prediction

can be produced for any choice of oscillation parameters by applying the oscillation probability to

the unoscillated Far Detector flux × cross section before the other corrections are applied.
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5.4 Systematics

There are a number of systematic uncertainties with the potential to effect the oscillation and tran-

sition measurements. They fall into a few general categories: energy reconstruction, backgrounds,

and extrapolation.

5.4.1 Energy Reconstruction Systematics

Track energy scale

Track energy as measured by range has a systematic uncertainty of 2% determined

using CalDet, CalDet (see Section 3.4). Track energy as measured by curvature

has an additional 1% uncertainty, determined by comparing range and curvature

momentum measurements for stopping tracks. These uncertainties are taken as

fully correlated between the two detectors.

Relative shower energy scale

The relative shower energy systematics come from uncertainties in the energy cal-

ibration procedure using cosmic ray muons (see Section 3.3). Data-simulation dif-

ferences in the various calibration steps are added in quadrature and give an un-

certainty of 2.4% in the Near Detector and 2.3% in the Far [149]. The errors are

uncorrelated between the detectors.

Absolute shower energy scale

The absolute shower energy systematic uncertainty is taken as fully correlated be-

tween the two detectors and has two major components. The first component stems

from uncertainties in the detector response to single hadrons as measured in the cal-

ibration detector at the CERN test beam and is 5.7% at all energies (see Section

3.4). The second component is energy-dependent and encapsulates uncertainties in

hadron production and intranuclear effects. It is 8.2% at the lowest energies, drop-

ping off to 3% above 10 GeV [150]. The final systematic has the energy-dependent

form

σshw = 6.6% + (3.5%)× e −Eshw
1.44 GeV (5.11)

which is taken as fully correlated bin-to-bin.

5.4.2 Background Systematics

Neutral current and charged current νµ backgrounds

The systematic uncertainty on the neutral current and charged current νµ back-

grounds was evaluated by comparing data and Monte Carlo in a background-
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Systematic Uncertainty
Steel Thickness 0.2%

Scintillator Thickness 0.2%
FD Live Time 1.0%

ND Fiducial Bias (z) 1.9%
ND Fiducial Bias (y) 0.7%
ND Fiducial Bias (x) 0.7%
N/F Selection Bias 3.0%

Table 5.1: Components of the Near-to-Far normalization systematic uncertainty.

dominated sample of events with 0 < DpID < 0.25, giving a systematic uncer-

tainty of 50% on the amount of NC background. Due to the higher y-distribution

of νµ’s relative to ν̄µ’s, this region had relatively equal amounts of both background

components (see Figure 5.6). The systematic was evaluated assuming that one, the

other, or both backgrounds were responsible for the data-simulation discrepancies

in this region, and it showed that a 50% systematic uncertainty covers all cases.

5.4.3 Extrapolation Systematics

Near-to-Far normalization

The 4% normalization systematic incorporates several systematic uncertainties, all

of which change the relative number of events expected at the two detectors per

POT. It is dominated by a 3% uncertainty on the difference in reconstruction and

selection efficiency in the two detectors. Table 5.1 shows all the contributions. The

‘fiducial bias’ uncertainties refer to data-simulation differences in the non-uniformity

of the vertex distributions coming from acceptance effects due to the geometry of

the Near Detector.

Downstream events

A +50% and −100% uncertainty is used on the number of neutrinos coming from

interactions outside of the target as described in Section 5.4.4.

Cross-sections

Several systematic effects are evaluated as part of the cross section systematic,

both on the overall cross section and on various NEUGEN [144] interaction model

parameters. Some affect both neutrinos and antineutrinos and others are specific

to antineutrinos. While there is some residual systematic effect because of spectral

differences between the detectors, the effect is negligibly small in the oscillation

analysis.6

6The cross section uncertainty does become important for the transition analysis, but only the case of a large
signal where size of α is anti-correlated with the νµ/ν̄µ cross section ratio.
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Flux modeling

The flux modeling uncertainty encapsulates a number of sources of error, including

hadron production, beam optics (horn positions, currents, etc.), the position of the

target, and the amount of material in the beamline. The flux errors are evaluated by

moving around the fit parameters in the beam tuning fit within their uncertainties

and observing the effect on the flux. Again, the majority of the errors cancel between

the two detectors, but some residual uncertainty remains because the two detectors

do not see identical fluxes.

5.4.4 Downstream Parents

The antineutrinos in the neutrino-mode beam, making up only 7% of the event rate, are sensitive

to details of the flux that are negligible in other analyses which use the focused events. The vast

majority of the focused events come from mesons that were produced in the target. These mesons

then travel along the decay pipe where they decay into neutrinos. However, mesons are also produced

due to collisions with other pieces of material downstream of the target. These outside-the-target

collisions involve both the primary protons and the secondaries produced in the target. These

downstream parents produce both neutrinos and antineutrinos, but are only a significant contribution

to the smaller antineutrino flux. The relative contributions to the Near and Far Detector antineutrino

event rates from parents produced in different regions of the beamline can be seen in Figure 5.13.7

Of particular concern are parents produced in the decay pipe – they tend to decay very close to
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Figure 5.13: The simulated Near Detector spectrum and Far/Near ratio for the various antineutrino parents:
π− and K− produced upstream and parents produced in the decay pipe. Note that the decay pipe component
is primarily at low energies and has a distinctly different Far/Near ratio from the other flux components.

7I studied downstream production of antineutrinos in detail.
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Figure 5.14: The Near (color) and Far (black) Detector spectra for parents produced in the decay pipe (left)
and upstream (right) regions. The upstream spectrum consists mostly ν̄µ’s from parents produced in the
target, but it also includes parents produced in the horns and other material in the target region. The plots
are normalized to summed area, that is the summed area of the two Near Detector plots is equal to that of
the two summed Far Detector plots. This shows that the decay pipe component looks very different to the
Near and Far Detectors while the upstream region looks relatively similar.

the Near Detector, leading to a large difference in their flux between the Near and Far Detectors.

They also appear primarily at low energies where the oscillation and transition signals would be most

prominent. This can be seen dramatically in Figure 5.14. The colored curves represent the spectrum

in the Near Detector and the black represent the spectrum in the Far Detector. While neutrinos

from upstream parents produce similar spectra at both detectors, the neutrinos from decay pipe

parents have a much higher rate at the Near Detector than they do at the Far Detector (relative to

the total rate at each respective detector). If the number of neutrinos coming from parents produced

in the decay pipe were mis-modeled, it would make a relative change in the low-energy event rate

between the detectors – precisely the signal being searched for in these analyses. The production of

particles outside the target is thus a major systematic uncertainty for the antineutrino analysis.

A method was proposed to determine a systematic uncertainty on the simulation’s downstream

hadronic interaction model using the difference between the data taken with an evacuated decay pipe

and data taken with helium in the decay pipe (leading to an enhanced rate of downstream interac-

tions). However, the method ended up being impossible due to concerns about the applicability of a

constraint on interactions with helium to interactions with steel (the majority of parents produced

in the decay pipe are produced in interactions with the iron walls) as well as the simulation’s poor

modeling of the effect of the helium (see Section 3.1.4 for a more complete discussion of the modeling

of helium in the decay pipe).

In the end, a simpler, if cruder, constraint on the decay pipe uncertainty was used. For the

purpose of evaluating the systematic, it was assumed that all data-Monte Carlo discrepancies at

the Near Detector were due to the decay pipe, both nominally and with all systematic uncertainties

applied in both directions. The systematic uncertainty on the decay was taken as the largest shift

in each direction required to make the integral number of low energy events agree between data and
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Monte Carlo. The systematic uncertainty was evaluated as +50%
−100%. It was more a worst-case scenario

than a true 1σ uncertainty, but it was acceptable since it certainly covered our uncertainty, and it

had a similar sized effect on the result as the other systematic uncertainties (that is, tiny compared

to the statistical uncertainty). It is described in detail in Appendix B.

5.4.5 Effect on the Analyses

The effect of each systematic uncertainty on the oscillation and transition results is estimated using

the simulation. Systematic shifts are applied to Monte Carlo events to produce shifted high-statistics

Near Detector and Far Detector spectra. The shifts are applied both positively and negatively,

producing two sets of spectra. The total systematic uncertainty can then be examined several ways.

Figure 5.15 shows the Far Detector systematic error band constructed from all the systematic

uncertainties summed in quadrature. The correlation in the systematics between the two detectors,

which generally leads to cancellation, needs to be taken into account. The systematically shifted

Near Detector spectrum is extrapolated to the Far Detector, producing a systematically shifted

prediction. The shift in the systematically shifted Far Detector spectrum is then divided out of the

shifted prediction, approximating the cancellation that occurs when fitting.

An oscillation analysis is also performed (see Section 5.6) for each systematic shift using the

systematically shifted Near and Far Detector spectra as fake data. The amount the best fit moves

compared to using the nominal Monte Carlo shows the size that systematic effect on the oscillation

result. The sizes of these shifts can be seen in Figure 5.16.

Finally, a transition analysis is performed (see Section 5.7) for each systematic shift using the

Figure 5.15: Total systematic error band on the Far Detector prediction. The band is obtained by adding
the effect of each individual systematic shift on the FD predicted energy spectrum in quadrature.
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Systematic Shift δ(∆m2
atm)/10−3eV2 δ(sin2(2θ23))

M
QE
A −15% −0.01195 +0.00471

+15% +0.00602 −0.00303

MRes
A −15% −0.00093 +0.00319

+15% −0.01641 +0.00335
rij2 −0.1 +0.01203 −0.00401

+0.1 −0.01131 +0.00384
rij3 −0.2 −0.00054 +0.00117

+0.2 0 0
Total CC νµ + νµ −3.5% −0.0008 −0.00065
cross section +3.5% +0.0026 +0.00054
νµ quasi-elastic −8% −0.00458 +0.00152
cross section +8% +0.00429 −0.00139
νµ resonance −8% −0.00563 +0.00416
cross section +8% +0.00548 −0.004
r1(3,4)2 -0.2 +0.01656 −0.0048

+0.2 −0.02917 +0.00872
Total CC νµ −4% +0.00566 −0.00192
cross section +4% −0.00514 +0.00174

Table 3: As table 2.
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Figure 5: The systematic shifts of tables 2 and 3 (input oscillation parameters
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Figure 5.16: The shifts in the best fit oscillation parameters induced by the application of systematic shifts
to the fake data. The cross section systematic is the sum in quadrature of all the component cross section
systematics.
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Figure 5.17: The shifts in the best fit transition probability as a function of true transition probability. The
colored bars represent the individual 1σ errors (including statistics in red) and the white error bar represents
the quadrature sum of all the errors. Note that the total error consists almost entirely of the statistical error,
especially at low transition probability.
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systematically shifted Near and Far Detector spectra as fake data at a range of possible transition

probabilities. The amount the best fit moves compared to using the nominal Monte Carlo shows

the size that systematic effect on the transitions result. The size of each individual uncertainty is

represented by the colored bars in Figure 5.17 and the sum of them all in quadrature is represented

by the white error bars. Note that the total error consists almost entirely of the statistical error,

especially at low transition probabilities.

5.5 Far Detector Data

Figure 5.18 shows the Far Detector data spectrum along with the prediction based on Near Detector

data without oscillations, the prediction with the same oscillation parameters measured for neutrinos

in [77], and the predicted background spectrum. 42 events were observed with an unoscillated

expectation of 66.6±8.2(stat)±5.0(syst) and an oscillated expectation of 60.3±7.8(stat)±4.6(syst)

assuming the neutrino oscillation parameters as above. The two-sigma deficit is at high energies so

it is not associated with previously observed oscillations [63, 65, 66, 77]. In order to be sure there is

not a problem with selection, comparisons between Far Detector data and simulation in the selection

variables are shown in Figures 5.19-5.21. The deficit is limited to the signal region in the CC/NC

separation parameter and appears at low (q/p) / σq/p since the deficit is at higher energies (higher

energy tracks have poorer charge-determination). There is no evidence of an excess of events being

inadvertently removed by a problem with the selection. Also shown are the track vertex and end

positions in Figure 5.22. The vertex plots show an apparent asymmetry with no event vertices in

the right-most section of the detector, but, as described in the next section, there is no evidence of

a detector problem in this region and fake data studies show that such an asymmetry is reasonably

likely with so few events.
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Figure 5.18: Far Detector ν̄µ data spectrum (black points) compared to predictions with no oscillations (solid
red histogram) and with the νµ oscillation parameters from [77] (dashed blue histogram). The background
is also displayed (gray shaded histogram).
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Figure 5.19: CC/NC separation parameter (DpID) is shown in the Far Detector in data (black points),
oscillated simulation (solid red line) and unoscillated simulation (dashed red line). All other selection cuts
have been applied. The line and arrow mark the region removed by the cut. The deficit appears only in the
signal region and does not appear to be due to a mismodeling of the CC/NC separator.
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Figure 5.20: Charge-sign selection variable (q/p) / σq/p is shown in the Far Detector in data (black points),
oscillated simulation (solid red line) and unoscillated simulation (dashed red line). All other selection cuts
have been applied. The deficit appears largest at low values since this variable is correlated with energy:
higher energy tracks have poorer charge-determination. The line and arrow mark the region removed by the
cut.
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Figure 5.21: Charge-sign selection variable |Relative Angle− π| is shown in the Far Detector in data (black
points), oscillated simulation (solid red line) and unoscillated simulation (dashed red line). All other selection
cuts have been applied. The line and arrow mark the region removed by the cut. There appear to be no
missing events at lower relative angles, as might be expected if there were a problem with this selector.
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Figure 5.22: Selected antineutrino event vertex (left) and end (right) positions in the Far Detector as a
function of x- and y-coordinates. The apparent asymmetry in vertex x positions was shown to be consistent
with statistical fluctuations (p > 0.05 compared to distributions from pseudo-experiments), given the number
of events observed.

5.5.1 Cross-checks

After the box was opened, several cross-check studies were undertaken. The first step was to un-

derstand how unlikely it was to observe so large a deficit. Figure 5.23 shows the distribution of the

number of selected events in 10,000 fake experiments, including systematic shifts. The probability

of seeing 42 events or below was 2.4%, but the probability of being as far from the mean (high

or low) as observed was 5.1%. The likelihood of the left-right vertex asymmetry was also exam-

ined and found to be consistent with statistical fluctuations: comparisons with pseduo-experiment

distributions gave p-values > 0.05 for the values measured in the data.8

A study was also undertaken to see what effect a mismodeling of precisely which events the

selection cuts remove in the Near Detector might produce. This effect was modeled by changing the

selection cuts up and down in only the Near Detector and seeing the size of this effect on the Far

Detector prediction. The ratios of the shifted to nominal predictions are shown in Figure 5.24 and

the changes are extremely small between 5 GeV and 30 GeV where the majority of the antineutrino

spectrum is.

The event rate over time was also examined. If the deficit were concentrated in a single time

period it would suggest a beam or detector problem. Figure 5.25 shows the number of Far Detector

antineutrino events per proton-on-target in 4-month blocks. There is no evidence of a single time

period being responsible for the deficit – it appears constant over time. Figure 5.26 shows the Near

Detector antineutrino event rate. An excess of Near Detector events could cause an apparent deficit

at the Far Detector, but the Near Detector event rate appears stable over time, as well.

8I performed the pseudo-experiment studies of the event counts and vertex asymmetry.
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Figure 5.25: Number of ν̄µ events in the Far Detector per 1020 POT per period of 4 months. This plot
includes Run I and II data represented by black points with Poisson errors. The red line represents the
expected event rate assuming the same oscillation parameters as measured for neutrinos [77]. The blue line
represents the expected event rate in the absence of oscillations. The deficit appears to be in all time periods.
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Figure 5.26: ν̄µ event rate per 1016 POT in the Near Detector over time. A fit to a constant is provided.
There is no evidence of a period of abnormally high Near Detector data that might explain the relative
deficit.
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5.6 Oscillation Analysis

The oscillation parameters are measured using a two-parameter fit for |∆m2
atm| and sin2(2θ̄23) from

Equation 5.1. The fit finds the oscillation parameters that maximize the likelihood (minimize the

quantity −2 lnL) of the data given the prediction at those oscillation parameters:

− 2∆ lnL(a) = 2
∑
i

[
pi(a)− di + di ln

di
pi(a)

]
(5.12)

where a =
[
∆m2

atm sin2(2θ̄23)
]

contains the fit parameters, i counts over energy bins, di is the

number of data events in bin i, and pi(a) is the predicted number of events in bin i given the

parameters in a. Note that the prediction, pi, is generated based on the Near Detector data as

described in Section 5.3. The oscillation formula (Equation 5.1) is applied to the predicted spectrum

in true energy before it is transformed into reconstructed energy for comparison with the data. Once

a likelihood surface has been produced, the contours are drawn using the Feldman-Cousins method

as described in Section 5.8.

The allowed oscillation contours are shown in Figure 5.27. The MINOS neutrino oscillation

parameters from [77] are contained within the 90% contour. The best fit is at a relatively high

mass splitting since the spectral deficit is at high energy, and even higher mass splitting cannot

be excluded. Much of the power of the analysis comes from counting events, rather than shape

information, due to its low statistics. Consequently, the results cannot distinguish the best fit point

with a moderate mixing angle from fast oscillations with a large mixing angle. The one-dimensional

exclusion curve, assuming maximal mixing, is shown in Figure 5.28. This data improves the exclusion

from the global fit for a range of low mass-splitting values.

5.7 Transition Analysis

The transitions fit is performed in the same way as the oscillation fit described above, except it

is a one-parameter fit: the vector of fit parameters in Equation 5.12 becomes a = [α] where α is

the probability that a neutrino transitions into an antineutrino from Equation 5.2. Again, once

a likelihood curve has been produced, the confidence intervals are determined using the Feldman-

Cousins method as described in Section 5.8.

The best fit was to no transitions or α = 0. The 68%, 90%, and 99% upper limits on α are 0.0067,

0.026, 0.067, respectively. The −2∆ lnL surface and exclusion confidence as a function of transition

probability can be seen in Figure 5.29. The final results are better than our sensitivity since the low

number of events in the Far Detector data makes an appearance signal even more unlikely.
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Figure 5.27: The 68% (red), 90% (blue), and 99.7% (black) results contours are shown. The best fit point is
marked as a triangle. The white area is excluded at 99.7% confidence. The MINOS best fit νµ parameters
from [77] are included in the 90% contour.
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Figure 5.29: At left is the −2∆ lnL curve from the fit for Transitions. It shows both the original curve
(black) and the Feldman-Cousins corrected curve for 90% confidence with systematics. At right is a plot
showing the Feldman-Cousins corrected exclusion confidence as a function of transition probability.



Feldman-Cousins Method 101

5.8 Feldman-Cousins Method

The Feldman-Cousins method [151] was used in the antineutrino analysis in order to draw correct

confidence limit contours for a given level of significance despite non-Gaussian errors. It also includes

the effects of systematic uncertainties.9

The idea behind Feldman-Cousins is to use fake experiments to build up empirical −2∆ lnL

distributions for the fit as a function of the parameter values. For each choice of parameter values,

fake experiments are generated assuming those parameter values. For each experiment, the −2∆ lnL

between the true parameters chosen for that experiment and the best fit are recorded. Over many

fake experiments this builds up an empirical −2∆ lnL distribution which can be used to determine

what value of −2∆ lnL is required to cover, for example, 90% of fake experiments at that choice

of true parameters. This procedure is repeated at many parameter values building up a line or

surface out of the −2∆ lnL’s required to cover 90% of experiments. The actual contours are drawn

by comparing the likelihood surface at a given set of parameters to the value on the Feldman-

Cousins surface. If the likelihood at a particular point is below the Feldman-Cousins surface for

those parameters, that point is inside the contour.

The classic case for needing a Feldman-Cousins correction is when drawing confidence intervals

near a physical boundary. The boundary gives extra information so the gaussian confidence interval

will be too conservative. Put another way, a lower −2∆ lnL value is required to cover a given

percentage of fake experiments. In practice, this comes about because fake experiments that would

have been unphysical “pile-up” at the physical boundary, meaning they have a smaller −2∆ lnL

from the truth than they would have had otherwise. An example of this effect, in the transition

 log LΔ-2 
0 2 4 6 8

Ps
eu

do
 E

xp
er

im
en

ts

1

10

210

310
 = 0.6α

 = 2.63
90

 log LΔ-2 

Figure 5.30: Example −2∆ lnL distributions for two transition probabilities. On the left is the distribution
for α = 6.67× 10−3 (very close to the physical boundary at 0). On the right is the distribution for α = 0.6,
well away from any boundaries. The black vertical lines are at −2∆ lnL = 2.71 in both plots, the canonical
one-dimensional 90% coverage value. The blue lines show the actual −2∆ lnL required to encompass 90%
of fake experiments. On the right, away from the boundary, this value is very close to the canonical value.
On the left, however, many experiments are piled up at lower −2∆ lnL’s so a −2∆ lnL = 1.41 is sufficient
to cover 90% of experiments.

9I developed and implemented the Feldman-Cousins procedure used in the antineutrino analysis.
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Figure 5.31: Feldman-Cousins 90% coverage grid with systematic shifts included in the individual experi-
ments. The color on the coverage grid represents the −2∆ lnL required to cover 90% of experiments. If the
experiment was perfectly gaussian (and without systematics), the grid would be a uniform 4.61 (light blue)
everywhere.

analysis, can be seen in Figure 5.30.

The two-dimensional Feldman-Cousins surface for oscillations can be seen in Figure 5.31. The

oscillation surface is shown for 90% confidence so the canonical two-dimensional value is 4.61. Areas

near the physical boundary are typically below this value due to the effect described above. The

regions around sin2(2θ̄23) ≈ 0.5 and at high |∆m2
atm| tend to be above this canonical value since

there is a degeneracy between them: fast oscillations (high |∆m2
atm|) and sin2(2θ̄23) ≈ 0.5 both

reduce the overall event rate by about a half. While these two hypotheses do produce different

low energy spectral shapes, there are not enough statistics in the antineutrino data to resolve the
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and without systematics the curves reproduce the gaussian expectation everywhere else. Adding systematics
always increases −2∆ lnL value required, leading to widened confidence intervals as expected.

difference.

The one-dimensional Feldman-Cousins curves for transitions can be seen in Figure 5.32. Shown

are the 68%, 90%, and 99% curves for gaussian, statistics-only, and statistics+systematics. Again,

the effect of the physical boundaries is clear: the curves drop below the gaussian line near α = 0

and α = 1. Well away from the physical boundaries without systematics the curves reproduce the

gaussian expectation. Adding systematics always increases −2∆ lnL value required. This increase

leads to widened confidence intervals as expected. The effect of systematics increases with transition

probability since the larger the appearance signal, the more significant the neutrino cross section

uncertainties become.
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Chapter 6

Antineutrinos in an Antineutrino
Beam

The sensitivity of the antineutrino oscillation analysis with the neutrino-mode beam, presented in

the previous chapter, is fundamentally limited for two reasons: the small size of the antineutrino

component of the neutrino-mode beam, and the high average energy of the antineutrino events.

These two effects limit the sensitivity to oscillations in the parameter region where oscillations have

already been measured for neutrinos. The solution to both of these shortcomings is the same: a

focused antineutrino beam. Such a beam can be produced by reversing the direction of the current in

the NuMI horns, focusing negative mesons instead of positive ones, giving an antineutrino focusing

peak. MINOS accumulated 1.7× 1020 POT with NuMI in antineutrino mode thanks to a proposal

from the Caltech neutrino group.

6.1 Selection

The first step in investigating the antineutrino-mode data is to select a pure sample of signal in-

teractions, in this case charged-current anti-muon neutrino (CCν̄µ) interactions. Of course, the

antineutrinos cannot be observed directly, so instead the goal is to identify the remnants of the

antineutrino hitting a nucleus,

ν̄µ +N → µ+ + hadrons. (6.1)

As with the analysis of antineutrinos in the neutrino beam (see Section 5.1), the primary backgrounds

are CCνµ interactions whose charge has been mis-reconstructed (sometimes called ‘wrong sign’ or

WS),

νµ +N → µ−(mis-id as µ+) + hadrons (6.2)



106 Antineutrinos in an Antineutrino Beam

Figure 6.1: q/p distribution of selected events before charge sign selection in the Near Detector. The red
curve represents MC expectation with the flux uncertainty and black dots represent data. Antineutrino-like
events are on the right (positive) and neutrino-like events are on the left (negative).

or neutral current interactions of any neutrino species which have a shower element that fakes a

muon track (NC’s),

νx +N → νx + fake muon + hadrons. (6.3)

The first selection step is to apply the same preselection cuts used in the neutrino-mode analysis:

• The beam and detector must have been in good operating condition.

• The event must occur during the beam spill, eliminating atmospheric neutrinos and

cosmic rays.

• The event vertex must occur in a fiducial volume separated from the edges of the

detector, ensuring that all the energy of the event is contained in the detector and

can be measured.

• The event must have a reconstructed track, eliminating most neutral current events.

The first piece of the selection proper is a cut on the reconstructed charge of the muon track to

eliminate the bulk of the CCνµ’s in the sample. In practice, the quantity measured in the detector

is the track’s curvature, which is proportional to the ratio of charge to momentum (q/p). The

distribution of this quantity in the Near Detector is shown in Figure 6.1. Only tracks with a positive

reconstructed charge (q/p > 0) are accepted.

The second piece of the selection is a cut on a multivariate CC/NC separation parameter called

RoID. It is the output of a 4-parameter k nearest neighbors (kNN) algorithm [152]. A kNN uses

a multi-dimensional space populated with simulated events, both signal and background. A metric
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based on these 4 variables defines the distance between two events. The separation parameter for a

given input event is then constructed based on what fraction of the k nearest neighbors (k events

with the smallest distance from the input event) are CC events.

RoID uses 4 variables (seen in Figure 6.2) which can distinguish between charged current and

neutral current interactions. The first two variables described below are topological and the second

two describe the energy deposition along the track.

Number of active planes in the track

True muon tracks tend to be longer (i.e. cross more planes) than the tracks of

particles from the hadronic shower.

Transverse profile parameter

Also called fraction of pulse height in the track, this variable looks at the amount

of energy deposited in the transverse vicinity of the track, away from the shower

at the vertex. True muon tracks typically leave only a single hit on a scintillator

plane while non-muon tracks typically have other unconnected hits sitting near the

reconstructed track. So, the larger the fraction of energy in the track as opposed to

surrounding it, the more likely that the track is a muon.

Average pulse height per plane in the track

The average deposited energy (pulse height) per plane of the track away from the

event vertex. It is related to dE/dx and distinguishes muons, which are typically

minimum-ionizing, from the more energetic interactions of hadronic shower parti-

cles.

Ratio of mean low pulse height to mean high pulse height

This variable compares the mean energies of the lowest and highest energy strips

in the track. Muon energy loss is relatively uniform, typically occurring through

ionization where large energy losses are rare. Hadronic shower energy loss happens

through completely different physical processes with much larger fluctuations in

deposited energy. The closer in energy the low mean and the high mean are, the

more likely the event is a muon.

The final output parameter from RoID in the Near Detector is shown in Figure 6.3. While this

variable primarily distinguishes charged current interactions from neutral current interactions, it also

eliminates some wrong sign background: CCνµ’s have a higher average y-distribution than CCν̄µ’s,

meaning νµ’s tend to look a little more NC-like.

The efficiency and purity performance of the selection in the Far Detector without oscillations

are shown in Figure 6.4. The overall reconstruction and selection efficiency, with a CC/NC cut at
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Figure 6.2: Distribution of the 4 kNN input variables before the CC/NC selection cut is applied. The red
histogram represents the Monte Carlo expectation with the flux error, the blue histogram represents the
total (charged and neutral current) background with the background uncertainty. Black points represent
data. Each shows some separation between the background and the bulk of the sample.

Figure 6.3: CC/NC separation parameter on a semi-log scale. The red histogram represents the simulation
with the flux error, the blue histogram represents the total background with the background uncertainty.
Black points represent data. Events with a CC/NC separation parameter less than 0.3 (30% CC’s in the
nearest neighbors) are cut. The peak in the background at high-PID contains CCνµ’s whose charge-sign has
been mis-identified.
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Figure 6.4: Performance of the antineutrino selection (RoID > 0.3, q/p > 0) in the Far Detector. The
dashed lines show the contamination before selection and the solid show efficiency and contamination after
selection. The CCνµ contamination rises at higher energies because these tracks do not curve as much and
so are more difficult to reliably assign a charge to. The background is reduced to nearly nothing in the
1− 6 GeV region most sensitive to oscillations.

0.3, is 93%1 and the sample is 92% pure antineutrinos. Below 6 GeV, the region most sensitive to

oscillations, the purity is 98% with the same efficiency. The wrong sign background is largest where

the curvature of the muon track is difficult to measure: at low energies (< 2 GeV) where the track is

too short and at high energies (> 10 GeV) where the track is too straight. NC’s are only significant

at low energies where a shower element might be mistaken for a short muon track.

6.2 Near Detector Spectrum

Now that a pure sample of antineutrinos has been obtained, the next step is to build up an energy

spectrum from the selected events. The energy of each event is reconstructed in two parts: the

muon track and the hadronic shower. For tracks that end within the detector (contained tracks),

the range of the track is the best measure of its energy. If the track leaves the detector its energy

is instead measured by the amount the track curves in the magnetic field. The shower energy is

measured calorimetrically: it is the sum of the energy deposited into the scintillator strips for all

non-track hits in the event. For more details see Section 3.4. The reconstructed track and shower

energy distributions in the Near Detector are shown in Figure 6.5.

Combining the track and shower energy for each event, the full energy spectrum can be built up

at the Near and Far Detectors. The selected antineutrino energy spectrum at the Near Detector in

1Calculated from simulation and taken relative to all true interactions in the fiducial volume.
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Figure 6.5: Reconstructed µ+ track momentum (left) and shower energy (right) in the Near Detector. The
red histogram represents the Monte Carlo expectation with the flux error, the blue histogram represents the
total (charged and neutral current) background with the background uncertainty. Black points represent
data. The track and shower energy of each event are summed to estimate the ν̄µ energy.

Figure 6.6: Reconstructed energy distribution of events selected as antineutrinos in the Near Detector. The
red histogram represents the Monte Carlo expectation with the flux error, the blue histogram represents the
total (charged and neutral current) background with the background uncertainty. Black points represent
data. Thanks to MINOS’s two-detector design, this flux uncertainty as well as systematic uncertainty from
the antineutrino cross section will cancel in the extrapolation to the Far Detector. This figure only includes
the first half of the Near Detector data – initial studies were done with a partial Near Detector data sample
and it was demonstrated that the Near Detector data did not change between the first and second halves of
the run period.
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the antineutrino-mode beam, in data and Monte Carlo, can be seen in Figure 6.6, along with the

flux uncertainty on the Monte Carlo. Thanks to MINOS’s two-detector design, this flux uncertainty

as well as systematic uncertainty from the antineutrino cross section will cancel in the extrapolation

to the Far Detector (see Section 5.3 for more details on extrapolation).2

Note that the simulation shown has been reweighted to account for the mismodeling of hadronic

interactions in the NuMI target using a fit to multiple beam running conditions. While necessary to

understand the Near Detector distributions, it has little bearing on the oscillation result since flux

uncertainties cancel in the extrapolation. See Section 3.1.4 for more details on the reweighting.

6.3 Systematics

There are a number of systematic uncertainties with the potential to affect the oscillation measure-

ment. They fall into a few general categories: energy reconstruction, backgrounds, and extrapolation.

Thanks to the two-detector design of the MINOS experiment, none of these systematic uncertainties

is significant in comparison to the statistical uncertainty from the size of the antineutrino data set.

6.3.1 Energy Reconstruction Systematics

Track energy scale

Track energy as measured by range has a systematic uncertainty of 2% determined

using CalDet (see Section 3.4). Track energy as measured by curvature has an ad-

ditional 1% uncertainty, determined by comparing range and curvature momentum

measurements for stopping tracks. These uncertainties are taken as fully correlated

between the two detectors.

Relative shower energy scale

The relative shower energy systematics come from uncertainties in the energy cali-

bration procedure using cosmic ray muons. Data-simulation differences in the vari-

ous calibration steps are added in quadrature and give an uncertainty of 1.85% in

the Near Detector and 1.05% in the Far Detector [153]. The errors are uncorrelated

between the detectors.

Absolute shower energy scale

The absolute shower energy systematic uncertainty is taken as fully correlated be-

tween the two detectors and has two major components. The first component stems

from uncertainties in the detector response to single hadrons as measured in CalDet

at the CERN test beam and is 5.7% at all energies (see Section 3.4). The second

2I had a central role in adapting the extrapolation procedure for the antineutrino beam.
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Systematic Uncertainty
Steel Thickness 0.2%

Scintillator Thickness 0.2%
FD Live Time 0.32%

ND Fiducial Bias (z) 0.43%
ND Fiducial Bias (y) 0.14%
ND Fiducial Bias (x) 0.53%
N/F Selection Bias 1.3%

Table 6.1: Components of the Near-to-Far normalization systematic uncertainty.

component is energy-dependent and encapsulates uncertainties in hadron produc-

tion and intranuclear effects. It is 8.2% at the lowest energies, dropping off to 3%

above 10 GeV [154]. The final systematic has the energy-dependent form

σshw = 6.6% + (3.5%)× e −Eshw
1.44 GeV (6.4)

which is taken as fully correlated bin-to-bin.

6.3.2 Background Systematics

Neutral current background

The neutral current background systematic was evaluated by comparing data and

Monte Carlo in an NC-dominated sample of events below a cut value of 0.3 in RoID,

giving a systematic uncertainty of 20% on the amount of NC background.

Charged current νµ background

As with the NC background, the CCνµ background was evaluated by comparing

data and Monte Carlo in a wrong sign-enhanced sample with (q/p)/(σq/p) > 2.3,3

giving a systematic uncertainty of 30% on the amount of wrong-sign background.

6.3.3 Extrapolation Systematics

Near-to-Far normalization

The 1.54% normalization systematic incorporates several systematic uncertainties,

all of which change the number of events expected at the two detectors per POT.

It is dominated by a 1.3% uncertainty on the difference in selection efficiency in

the two detectors, evaluated by hand-scanning events in both detectors in data and

Monte Carlo. Also included are uncertainties in the fiducial mass of the detectors,

3This variable is used in the neutrino-mode selection and is described in Section 5.1.
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the spatial uniformity of the detector acceptances, and the live time of the Far

Detector. All the components are tabulated in Table 6.1.

Cross-sections

A number of uncertainties are evaluated, both on the overall cross section and

on various NEUGEN interaction model parameters. Some affect both neutrinos

and antineutrinos and others are specific to antineutrinos. While the majority

of the cross section uncertainty cancels between the two detectors, some residual

uncertainty remains because of the spectral differences between the detectors.

Flux modeling

The flux modeling uncertainty encapsulates a number of sources of error, including

hadron production, beam optics (horn positions, currents, etc.), the position of the

target, and the amount of material in the beamline. The flux errors are evaluated by

moving around the fit parameters in the beam tuning fit within their uncertainties

and observing the effect on the flux. Again, the majority of the errors cancel between

the two detectors, but some residual uncertainty remains because the two detectors

do not see identical fluxes.

6.3.4 Effect on the Analysis

As with the neutrino-mode analysis (see Section 5.4), the effect of each systematic uncertainty on

the oscillation results is estimated using the Monte Carlo simulation. Systematic shifts are applied

to Monte Carlo events to produce shifted Near and Far Detector spectra. The shifts are applied

both positively and negatively, producing two sets of spectra. The total systematic uncertainty can

then be examined several ways.

Figure 6.7 shows the Far Detector systematic error band constructed from all the systematic

uncertainties summed in quadrature. The correlation in the systematics between the two detectors,

which generally leads to cancellation, needs to be taken into account. The systematically shifted

Near Detector spectrum is extrapolated to the Far Detector, producing a systematically shifted

prediction. The shift in the systematically shifted Far Detector spectrum is then divided out of the

shifted prediction, approximating the cancellation that occurs when fitting.

An oscillation analysis is also performed (see Section 6.5) for each systematic shift using the

systematically shifted Near and Far Detector spectra as fake data. The amount the best fit moves

compared to using the nominal Monte Carlo shows the size of that systematic effect on the oscillation

result. The sizes of these shifts, which are approximately an order of magnitude smaller than the

statistical uncertainty, can be seen in the colored lines in Figure 6.8.
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Figure 6.7: Total systematic error band on the Far Detector prediction. The band is obtained by adding the
effect of each individual systematic shift on the FD predicted energy spectrum in quadrature, taking into
account the cancellation from extrapolation.

)θ(22sin
0.845 0.85 0.855 0.86 0.865 0.87 0.875

)2
eV

-3
|(1

0
2

m
Δ|

3.30

3.32

3.34

3.36

3.38

3.40

3.42

NC Background
WS CC Background
Track energy
Relative normalisation
Relative hadronic energy FD
Relative hadronic energy ND
Overall hadronic energy
Beam
Cross sections

 POT2010×MINOS Preliminary: 1.71  

 runningµνMINOS 

Figure 6.8: The shifts to the best fit oscillation parameters induced by the application of systematic shifts to
the fake data. The cross section systematic is the sum in quadrature of all the component cross section sys-
tematics. The systematic uncertainties are approximately an order of magnitude smaller than the statistical
uncertainty.
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6.4 Far Detector Data

Figure 6.9 shows the measured Far Detector energy spectrum along with the total spectrum and

background predicted without oscillations based on the Near Detector data. 156 events are predicted

in the Far Detector without oscillations and 97 events were actually observed. Before fitting for

oscillations, however, cross-checks are required to be sure that the Far Detector events being used

are actually antineutrinos.

Figure 6.10 shows the q/p (curvature) distribution for selected Far Detector tracks of both charge

signs. Antineutrinos have positive q/p and neutrinos have negative q/p. Both neutrinos and an-

tineutrinos agree well with the (oscillated) Monte Carlo simulation, lending confidence that the

antineutrinos are actually antineutrinos and the neutrinos are actually neutrinos.

There are also kinematic differences between charged current neutrinos and antineutrinos that

can provide an independent check on the contents of each selected sample. Particularly, the y-

distribution (fraction of event energy going into the hadronic component instead of the muon) is

skewed strongly towards low-y for antineutrinos while it is more uniform for neutrinos. We can see

this expected behavior in the Monte Carlo and how it is fulfilled in the data in Figure 6.11.

Finally, we can also take advantage of the choice of detector magnetic field direction to distinguish

neutrinos from antineutrinos. While the beam was in antineutrino mode, the two detectors had their

magnetic fields set to focus positive (antineutrino) tracks inwards and defocus negative (neutrino)

tracks outwards. While track vertices are distributed uniformly for both neutrinos and antineutrinos

(see Figure 6.12), the track ends for antineutrinos should cluster towards the center of the detector
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Figure 6.9: The selected ν̄µ energy spectrum at the Far Detector. The red histogram represents the prediction
from the Near Detector without oscillations, the gray histogram represents the expected background, and
the black points represent data.
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while the neutrino track ends should cluster at the outer edges of the detector. Precisely this behavior

is seen in Figure 6.13.

Figure 6.10: q/p distribution of selected Far Detector events before charge sign selection. The solid red
curve represents the oscillated simulation, the dashed red curve represents the unoscillated simulation, and
the black points represent data. The data agrees well with the (oscillated) simulation.

Figure 6.11: Inelasticity distribution of selected ν̄µ (red, left) and νµ (blue, right) interactions in the Far
Detector. The solid colored histograms represents the simulation assuming the best fit oscillation parameters,
the dashed histograms represent the unoscillated simulation, and the black points represent data. The data
is consistent with the differing y-distributions of antineutrinos and neutrinos.
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Figure 6.12: The event vertices of selected ν̄µ’s (left) and νµ’s (right). They are distributed uniformly
throughout the fiducial volume for both ν̄µ’s and νµ’s.

Figure 6.13: The track end positions of selected ν̄µ’s (left) and νµ’s (right). The ν̄µ’s are being focused
inward by the detector’s magnetic field while the νµ’s are being defocused towards the edges.
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6.5 Oscillation Results

A fit to the oscillation parameters, |∆m2
atm| and sin2(2θ̄23), was performed, assuming the two-

neutrino oscillation probability

P (ν̄µ → ν̄µ) = 1− sin2(2θ̄23) sin2

(
1.27∆m2

atm

L

E

)
(6.5)

where L = 735 km and E is the neutrino energy in GeV. The fit was performed by minimizing the

negative log likelihood between the data and an oscillated prediction assuming Poisson statistics:

− 2 lnL(a) = 2

100∑
i=1

[
pi(a)− di + di ln

di
pi(a)

]
(6.6)

where pi(a) is the predicted content in bin i as a function of the oscillation parameters a =[
∆m2

atm sin2(2θ̄23)
]
, di is the number of data events observed in bin i, and the index i runs over the

following 100 bins: one bin from 0 to 0.5 GeV, then 0.25 GeV bins up to 20 GeV, 1 GeV bins up to

30 GeV, and 2 GeV bins up to 50 GeV.4

The oscillation parameters which best fit the data (i.e. maximize the above likelihood) are

|∆m2
atm| =

(
3.36+0.46

−0.40(stat)± 0.06(syst)
)
× 10−3 eV2 and sin2(2θ̄23) = 0.860+0.11

−0.12(stat)± 0.01(syst).

Note that the sign of |∆m2
atm| cannot be determined since the probability depends on the squared

sine of this quantity. The data is shown with the best fit oscillation prediction in Figure 6.14. The
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Figure 6.14: On the left is the selected ν̄µ energy spectrum at the Far Detector. The histograms represent the
predictions from the Near Detector data without oscillations (red), with the best fit oscillation parameters
|∆m2

atm| = 3.36× 10−3 eV2 and sin2(2θ̄23) = 0.860 (blue), and for the background (filled gray). The black
points represent the data. On the right are the ratios of data and best fit to the no-oscillation hypothesis
with the background subtracted. The no-oscillation hypothesis is excluded at 6.3σ.

4I performed the fit to the antineutrino data and produced the results and contours. I adapted the Feldman-
Cousins procedure used here from the procedure I created for the analysis with the neutrino-mode beam.
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Figure 6.15: The 68% and 90% antineutrino oscillation contours from antineutrino-mode running. The best
fit is at |∆m2

atm| = 3.36 × 10−3 eV2 and sin2(2θ̄23) = 0.860 They are compared with the 90% confidence
global fit without MINOS data [76].

best fit has a χ2
Fit = 94 with 98 degrees of freedom, which gives a p-value of 0.59, but that assumes

that χ2
Fit is actually distributed as a χ2, which is an unreliable assumption given the large number of

bins relative to the number of data points. The no-oscillation scenario (shown in red in Figure 6.14)

is excluded at 6.3σ (−2∆ lnL = 43). That number is calculated before systematics and Feldman-

Cousins corrections have been applied, but the systematics are always small and Feldman-Cousins

has little effect at large −2∆ lnL values.

Figure 6.15 shows the two-dimensional confidence intervals (contours) at the 68% and 90% confi-

dence levels for the oscillation parameters. The contours were determined using the Feldman-Cousins

method, using the same technique as in the neutrino-mode analysis (see Section 5.8). While the best

fit of the mixing angle is 0.860, we do not exclude maximal mixing at 90% confidence. The contour

is compared with a global fit for atmospheric antineutrino mixing to all neutrino experiments (ex-

cept MINOS)[76]. MINOS provides a significant new constraint on the mass-splitting, but is still

consistent with the global fit. Note that none of the experiments in the global fit can distinguish

neutrinos from antineutrinos on an event-by-event basis – they are limited to statistical separation

in combined samples.

Figure 6.16 shows the same MINOS and global fit contours compared with the neutrino-mode

oscillation measurement (see Chapter 5). Though the best fit points are dramatically different, the

contours do have significant overlap: the antineutrino mode contour lies directly over the lowest

mass-splitting region of neutrino mode result.
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Figure 6.16: The 68% and 90% antineutrino oscillation contours from antineutrino-mode running compared
with the 90% antineutrino contour from neutrino-mode running. The best fit for antineutrino mode is at
|∆m2

atm| = 3.36 × 10−3 eV2 and sin2(2θ̄23) = 0.860 and the best fit for neutrino mode is at |∆m2
atm| =

17.7 × 10−3 eV2 and sin2(2θ̄23) = 0.55. They are compared with the 90% confidence global fit without
MINOS data [76]. The 90% contours are in good agreement.

6.5.1 Comparison to Neutrinos

A natural question is how consistent the antineutrino oscillation parameters are with the neu-

trino oscillation parameters already measured by MINOS: |∆m2
atm| = 2.32+0.12

−0.08 × 10−3 eV2 and

sin2(2θ23) > 0.90.

Figure 6.17 shows the Far Detector spectrum and ratio, but in addition to the best fit predic-

tion it shows, represented by the dashed line, the prediction at the oscillation parameters measured

by MINOS for the neutrinos, |∆m2
atm| = 2.32 × 10−3 eV2 and sin2(2θ23) = 1 [67]. Figure 6.18

shows the contours from the two analyses overlaid. There is some tension between the two mea-

surements as the 90% contours are only barely overlapping. To get a combined likelihood consistent

with the antineutrino analysis, we must rephrase the problem and use a Feldman-Cousins proce-
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Figure 6.17: As in Figure 6.14 with the additional dashed histogram representing the prediction with the
neutrino best fit parameters |∆m2

atm| = 2.32× 10−3 eV2 and sin2(2θ23) = 1.0.
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Figure 6.18: The 68% and 90% antineutrino oscillation contours from antineutrino-mode running and the
neutrino oscillation contours from Runs I-III of neutrino-mode running. The antineutrino best fit is at
|∆m2

atm| = 3.36×10−3 eV2 and sin2(2θ̄23) = 0.860 while the neutrino best fit is at |∆m2
atm| = 2.32×10−3 eV2

and sin2(2θ23) = 1. There is some tension between the two measurements as the 90% contours are only
barely overlapping.

dure.5 Instead of 2 experiments each with 2 parameters, it must be treated as 1 experiment with

4 parameters. Then, the question is how much better an oscillation fit with all 4 parameters free

is than one where the |∆m2
atm|’s and sin2(2θ23)’s are constrained to be the same. It can be ex-

pressed more clearly with a simple variable transformation. The 4 original parameters, |∆m2
atm|,

|∆m2
atm|, sin2(2θ23), and sin2(2θ̄23) become only |∆m2

atm|, sin2(2θ23) with two new variables defined

5I developed the Feldman-Cousins procedure for determining the significance of the difference between the neutrino
and antineutrino data.
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Figure 6.19: One example fake experiment. The lower right is antineutrinos and the other three are neutrinos
in Runs I, II, and III. The blue histogram is the 4-parameter best fit while the red is the 2-parameter best
fit. The −2∆ lnL between the data and each fit is calculated, and it is the difference in these −2∆ lnL’s
that is recorded.

as α =
(
|∆m2

atm| − |∆m2
atm|

)
and β =

(
sin2(2θ̄23)− sin2(2θ23)

)
. Only α and β are relevant to the

consistency of the two results, so the 4-parameter likelihood can be reduced to a 2-parameter profile-

likelihood,6 treating |∆m2
atm| and sin2(2θ23) as nuisance parameters. Then, the goal is to evaluate

the difference between the best fit point and (0, 0) on the α− β profile-likelihood surface.

In the Feldman-Cousins prescription, the significance of the difference between the likelihood

given the best fit parameters and the likelihood given any other set of parameters is evaluated using

fake experiments produced assuming the alternate parameters. In this case, the best fit point is the

4-parameter best fit (or the two data sets fit separately) and the alternate point is the 2-parameter

best fit where neutrino and antineutrino parameters are assumed to be equal (α = 0, β = 0).

However, to generate the fake experiments, the values for the nuisance parameters, |∆m2
atm| and

sin2(2θ23), are needed as well. These are taken from the profile-likelihood of the data, i.e. the best

fit |∆m2
atm| and sin2(2θ23) values of a 2-parameter fit to both data sets.

Fake experiments now need to be produced using these ‘true’ oscillation parameters. The method

for producing the experiments is the same as that described in Section 5.8; it has just been extended

to produce neutrino fake experiments as well as antineutrino fake experiments. The neutrino exper-

6The profile-likelihood is a well-known statistical technique for reducing the number of parameters in a surface.
The value of the profile-likelihood at a given subset of the parameters is the minimum of a fit to the other (nuisance)
parameters while holding the given parameters fixed [35].
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Figure 6.20: The empirical (blue) and theoretical (red) distribution of −2∆ lnL’s between the 4-parameter
and 2-parameter fits. Our data has a −2∆ lnL = 7.07, which is smaller than 1.99% of fake experiments.
The uncertainty is the binomial error on the fraction of experiments above the data value.

iments are produced in three separate parts, one for each neutrino mode run period.7

Systematic uncertainties for both neutrinos and antineutrinos are incorporated, but in differ-

ent ways consistent with the two analyses. The neutrino systematics are incorporated as nuisance

parameters in the fitting routine for that analysis [67], so their effect is already included in the neu-

trino likelihood surface from which we get the neutrino part of the data −2∆ lnL. The antineutrino

systematics, on the other hand, are incorporated into the antineutrino fake experiments.

The Feldman-Cousins prescription tells us to build up an empirical −2∆ lnL distribution from

the −2∆ lnL’s between the input parameters and the best fit parameters in each of our pseudo-

experiments. In this case, “best fit” refers to the 4-parameter best fit and the “input parameters”

refers to the 2-parameter best fit (the input parameters being α = 0, β = 0). An example fake

experiment with these two fits is shown in Figure 6.19.

Evaluating the significance of our data is then as simple as finding what percentage of fake

experiments (which assume the input parameters) have a larger −2∆ lnL than the data. This

distribution is shown in Figure 6.20. For our data, the measured −2∆ lnL = 7.07, which is smaller

than 1.99% of fake experiments, so there is a 1.99% probability of observing neutrino and antineutrino

data sets at least this discrepant if they are oscillating with the same underlying parameters.

7Note, the neutrino data sets are produced and fit in Runs I, II, and III, but not in separate resolution bins as
done in [67]. Of course, in principle it is best if the Feldman-Cousins experiments exactly reproduce the procedure
taken on the real data. In this case, it is not so crucial since the issue at hand is how “gaussian” the experiment is,
rather than its sensitivity. The neutrino analysis is performed under the reasonable (for that analysis) assumption
of gaussian statistics. Any variation on the method, for example resolution binning, will change the sensitivity but
should not change how “gaussian” the likelihood surface is.
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Chapter 7

Conclusion

Throughout its history, the neutrino has been at the forefront of new discoveries in physics, par-

ticularly in the breaking of symmetries that were previously believed to be absolute. According

to CPT symmetry, νµ’s and ν̄µ’s should show the same disappearance behavior due to oscillations.

MINOS has made measurements of atmospheric-sector antineutrino oscillations with greater pre-

cision than was possible before, thanks to its unique ability to identify individual neutrinos and

antineutrinos in a long-baseline oscillation experiment. While studying the antineutrino component

of the neutrino-mode beam, we have observed no evidence of neutrino-to-antineutrino transitions

and limit the fraction of oscillating νµ’s that might be transitioning to ν̄µ’s to less than 0.026, which

others have used to set an improved limit on the effective Majorana νµ mass, |〈mµµ〉| [117].

We have measured the ν̄µ oscillation parameters to be |∆m2
atm| =

(
3.36+0.46

−0.40(stat)± 0.06(syst)
)
×

10−3 eV2 and sin2(2θ̄23) = 0.860+0.11
−0.12(stat) ± 0.01(syst), giving a significantly tighter constraint

on the mass-splitting than the previous world combined fit. When compared with the MINOS

measurement of νµ disappearance, there is a 2% probability of having two data sets that are at

least as discrepant as these, assuming they have the same underlying oscillation parameters. As of
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Figure 7.1: The ν̄µ contours with different amounts of additional antineutrino-mode data. The data already
accumulated is used and the additional data is simulated assuming the oscillation parameters measured in
the first 1.7× 1020 POT. With double the current data the νµ and ν̄µ contours are well separated.
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Figure 7.2: The ν̄µ contours with different amounts of additional antineutrino-mode data. The data already
accumulated is used and the additional data is simulated assuming the oscillation parameters measured for
neutrinos in [67]. With double the current data the νµ and ν̄µ contours overlap significantly.

now, this measurement cannot exclude the possibility of having the same neutrino and antineutrino

atmospheric-sector oscillation parameters at better than 2%, which is insufficient evidence to warrant

discarding CPT conservation or introducing a new particle or force.

However, the measurement of ν̄µ disappearance was made with only six months of antineutrino-

mode beam data, giving fewer than 100 events at the Far Detector. The analysis is still highly-limited

by statistics and a small amount of additional running can lead to a dramatic improvement in the

precision of the antineutrino measurement. Figure 7.1 shows the contours that might be possible

if additional data taking in antineutrino mode gives the same best-fit oscillation parameters. With

double the current data set (3.5× 1020 POT), the likelihood of seeing such discrepant distributions

while assuming equal underlying oscillation parameters drops to approximately 0.1%.1 If, on the

other hand, the antineutrinos and neutrinos do have the same underlying oscillation parameters, the

new data is likely to significantly increase the overlap of the contours, as can be seen in Figure 7.2.

MINOS has accumulated an additional 1× 1020 POT of antineutrino-mode data which is currently

being analyzed.

Neutrino masses, and the flavor oscillations that derive from them, are the first concrete evidence

of physics beyond the Standard Model. If the difference between νµ and ν̄µ oscillations becomes

more significant with more data, it could be evidence of further physics beyond the Standard Model.

CPT invariance, a symmetry at the heart of quantum field theory, requires that particles and their

antiparticles have the same mass. If the apparent difference between |∆m2
atm| and |∆m2

atm| is taken

at face value, then it would imply that the neutrino and antineutrino masses are different - a violation

of CPT invariance. The difference observed might also be due to as yet unobserved interactions of

the neutrinos and antineutrinos in the matter they travel through, which can modify the oscillation

1As with Figures 7.1-7.2, the already accumulated data plus simulated data with the same oscillation parameters
is used to calculate this number.
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probability. Several possibile models of both CPT violation and new interactions have already been

examined in light of the data presented in this thesis [78, 79, 80, 83, 93, 95].

If the |∆m2
atm|-|∆m2

atm| difference does not become more significant after the new MINOS data

has been analyzed, there will likely be no more MINOS antineutrino data. However, the study of

antineutrinos will not end with MINOS. After the measurement of θ13, the next goals of the neutrino

physics community are to measure the mass hierarchy and CP violation. Both of these measurements

require observing differences between the νe and ν̄e appearance probabilities in νµ and ν̄µ beams.

Consequently, future long baseline experiments which hope to tackle these questions will need to

accumulate significant data sets with both νµ and ν̄µ beams. NOνA and LBNE are already planning

to accumulate both sets of data. Thus, in order to further the goals of the field, the study of νµ and

ν̄µ oscillations must continue. If the apparent neutrino-antineutrino discrepancy persists, it is likely

that one of these future experiments will be able to determine whether there is more new physics in

the neutrino sector.
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Appendix A

Meson and muon decay kinematics

The majority of antineutrinos in the MINOS detectors are produced from three processes:1

π− → ν̄µ + µ− (A.1)

K− → ν̄µ + µ− (A.2)

µ+ → ν̄µ + νe + e+, (A.3)

the two-body decays of negative pions and kaons, and the decay of muons. The mesons decay

primarily into muons and muon neutrinos because of the suppression by a factor of 104 of the ν̄e/e
+

channel due to the weak interaction’s chiral selectivity. This is demonstrated at the end of this

appendix since the calculation relies on the kinematics derived below.

A.1 Probability that the Neutrino Reaches the Detectors

Given a particular parent p with mass mp and velocity βp, and the relative angle between the parent’s

direction of travel and the path to the detectors, we can calculate the probability that its neutrino

daughter will reach either MINOS detector, and what energy it would have if it did so. Take θ as

the angle between the direction of motion of the parent and that of the outgoing neutrino in the lab

frame and θ∗ as this same angle in the parent’s rest frame.

The simplest case is two-body meson decay (Equations A.2 and A.3). Since pions and kaons are

spinless, the neutrino is emitted isotropically in the parent’s rest frame,2

dN

d cos θ∗
=

1

2
. (A.4)

However, this expression must be boosted to the lab frame in order to see the distribution of neutrinos

198.5% in neutrino mode at the Near Detector, the remaining 1.5% coming from three-body decays of K− and
K0
L.

2Normalized so that
∫ 1
−1

dN
d cos θ∗ d cos θ∗ = 1.
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seen by the detectors, dN/d cos θ. The transformation takes the form,

dN

d cos θ
=

dN

d cos θ∗
d cos θ∗

d cos θ
. (A.5)

Let p‖ be the component of the neutrino’s momentum, pν , that is parallel to the parent’s momentum

pp. We will neglect the mass of the neutrino, meaning |pν | = Eν . We can then write,

cos θ =
p‖

Eν
cos θ∗ =

p∗‖

E∗ν
. (A.6)

We can then perform a Lorentz boost from the parent’s rest frame to the lab frame in one

dimension, boosting only the parallel portion of the neutrino’s momentum: E∗ν

p∗‖

 =

 γp −γpβp
−γpβp γp

 Eν

p‖

 (A.7)

 E∗ν

p∗‖

 =

 γp(Eν − βpp‖)
γp(p‖ − βpEν)

 . (A.8)

Then, we can substitute into the angle in the parent’s rest frame to get an expression for it in terms

only of lab frame variable:

cos θ∗ =
p∗‖

E∗ν
(A.9)

=
γp(p‖ − βpEν)

γp(Eν − βpp‖)
(A.10)

=

p‖
Eν
− βp

1− βp p‖Eν
(A.11)

=
cos θ − βp

1− βp cos θ
. (A.12)

Then, by taking the derivative with respect to cos θ we can get the transformation factor required

for Equation A.5,

d cos θ∗

d cos θ
=

d

d cos θ

(
cos θ − βp

1− βp cos θ

)
(A.13)

=
βp(cos θ − βp)
(1− βp cos θ)2

+
1

1− βp cos θ
(A.14)

=
1− β2

p

(1− βp cos θ)2
(A.15)

=
1

γ2
p(1− βp cos θ)2

. (A.16)

We can now calculate the probability per unit area of a neutrino reaching one of the detectors
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at a distance zD and angle θD from the parent’s decay point. Take some small area element on the

face of the detector of area A. The probability that the parent emits a neutrino passing through

this area element can be found by integrating dN/d cos θ over the solid angle subtended by A:

P =

∫
A

1

2π

dN

d cos θ
dΩ, (A.17)

where the factor of 1
2π is required to normalize out the integral over the azimuthal angle. Given the

long distance between the decay point and the detector and the small size of the area A, we can

take the angular decay distribution as constant over solid angle subtended by our area,

P =
1

2π

dN

d cos θ

∣∣∣∣
cos θ=cos θD

ΩA (A.18)

=
1

2π

1

γ2
p(1− βp cos θD)2

A

z2
D

. (A.19)

Thus we get a probability per unit area of reaching one of the detectors of

p =
1

2πz2
Dγ

2
p(1− βp cos θD)2

. (A.20)

A.2 Energy of the Neutrino that Reaches the Detectors

The next step is to calculate what energy the neutrino would have if it reached the detector. The

first step is to calculate the neutrino’s energy in the parent’s rest frame, E∗ν . Let q∗p, q∗µ, and q∗ν

be the 4-momentum of the parent, muon, and neutrino in the parent’s rest frame. Conservation of

energy and momentum give us

q∗µ + q∗ν = q∗p . (A.21)

Rearranging and taking the dot product of each side with itself,

q∗µ · q∗µ = (q∗p − q∗ν) · (q∗p − q∗ν) (A.22)

|q∗µ|2 = |q∗p |2 + |q∗ν |2 − 2q∗p · q∗ν (A.23)

m2
µ = m2

p + 0− 2
(
E∗pE

∗
ν − p∗p · p∗ν

)
. (A.24)

Since we are in the parent’s rest frame, its 4-momentum is

qp =

 E∗p

p∗p

 =

 mp

0

 . (A.25)
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Using this, our expression becomes

m2
µ = m2

p − 2 (mpE
∗
ν − 0 · pν) (A.26)

m2
µ = m2

p − 2mpE
∗
ν (A.27)

E∗ν =
m2
p −m2

µ

2mp
. (A.28)

In order to find the energy of the neutrino at the detectors, we need to boost this energy into the

lab frame. We will take advantage of the fact that the inner product of two 4-vectors is a Lorentz

invariant. Taking the unstarred q’s as the lab frame 4-momenta and θ as the angle between the

parent’s direction of travel and the path to the detectors,

q∗p · q∗ν = qp · qν (A.29)

E∗pE
∗
ν − p∗p · p∗ν = EpEν − pp · pν (A.30)

mpE
∗
ν = EpEν − |pp|Eν cos θ (A.31)

Eν =
mpE

∗
ν

Ep − |pp| cos θ
(A.32)

Eν =
E∗ν

Ep
mp
− |pp|mp

cos θ
(A.33)

Eν =
E∗ν

γp(1− βp cos θ)
(A.34)

Eν =
(m2

p −m2
µ)/2mp

γp(1− βp cos θ)
. (A.35)

Thus we have an expression for the energy of the neutrino as a function of the parent’s mass and

velocity and the relative angle at which the neutrino must travel the reach the detectors.

A.3 Helicity Suppression in Meson Decays

Take the pion decay shown in Equation A.2. In principle, ν̄e’s and e+’s could also have been

produced but that channel is suppressed due to the weak interaction’s chiral selectivity – only left-

handed particles and right-handed antiparticles interact.

Let us look at the decay in the rest frame of the π−. The outgoing antineutrino must have right-

handed chirality and, since the neutrino mass is negligible, right-handed helicity. Since the pion has

spin-0, conservation of angular momentum requires that the outgoing lepton and antineutrino must

have opposite spins:
←−̄
νl ← π− →

−→
l−, (A.36)

meaning both the ν̄l and l− come out with right-handed helicity. If the lepton l− were massless, this
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process would be completely forbidden since then its helicity and chirality would always be equal

and the right-handed l− would couple to the weak force.

However, since the l− does have mass, its right-handed helicity state has a component with

left-handed chirality.3 Let us take a Dirac spinor with right-handed helicity and look at its chiral

projections:

u↑ = PRu↑ + PLu↑ =
1

2

(
1 +

|p|
E +m

)
uR +

1

2

(
1− |p|

E +m

)
uL. (A.37)

Since only the left-handed chiral component will contribute, the matrix element for the decay must

be proportional to the coefficient of the left-handed projection:

M∝ 1

2

(
1− |p|

E +m

)
. (A.38)

Let us calculate this coefficient in the pion rest frame,

M∝ 1

2

(
1− |p∗l |

E∗l +ml

)
. (A.39)

From conservation of momentum and taking the neutrino mass as negligible,

|p∗l | = | − p∗ν | = |p∗ν | = E∗ν , (A.40)

and from conservation of energy,

E∗l = E∗π − E∗ν = mπ − E∗ν , (A.41)

and now substituting back into the matrix element:

M∝ 1

2

(
1− E∗ν

mπ +ml − E∗ν

)
. (A.42)

Substituting in the expression for E∗ν from Equation A.28 and taking parent p = π,

M ∝ 1

2

1−
m2
π−m

2
l

2mπ

mπ +ml − m2
π−m2

l

2mπ

 (A.43)

∝ 1

2

(
1− m2

π −m2
l

m2
π + 2mlmπ +m2

l

)
(A.44)

∝ 1

2

(
2mlmπ + 2m2

l

(mπ +ml)2

)
(A.45)

∝ ml

mπ +ml
. (A.46)

3It must since the particle moves at less than the speed a of light, meaning a Lorentz-transformation can change
the helicity.
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So, the ratio of the branching ratios for producing a ν̄e and a ν̄µ is approximately:

P (π− → e−ν̄e)

P (π− → µ−ν̄µ)
≈ m2

e/(mπ +me)
2

m2
µ/(mπ +mµ)2

≈ 1× 10−4. (A.47)

The detailed calculation of the ratio of matrix elements and phase-space factors can be found in

[155] and comes to
P (π− → e−ν̄e)

P (π− → µ−ν̄µ)
=
m2
e(m

2
π −m2

e)
2

m2
µ(m2

π −m2
µ)2

= 1.28× 10−4, (A.48)

which is quite close to the experimental value 1.23± 0.02× 10−4.
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Appendix B

The Decay Pipe Systematic

Decay pipe production, or downstream production, refers to the neutrinos that come from the decay

of hadrons produced in the decay pipe rather than in the target. The interest in studying it is

that 14% of the Near Detector antineutrino events and 6% of the Far Detector antineutrino events

come from parents produced in the decay pipe. Figure B.1 shows the vertex distribution (weighted

to the number of events expected in the Near Detector) color coded for the different production

regions. The decay pipe is in red. While the downstream production also exists for neutrinos, it is

negligible in comparison to the much larger focused sample. The trouble with the sample is two-fold.

First, it does not produce the same spectrum in the Near and Far Detector (see Figure B.2) so the

uncertainties in production cross-sections do not fully cancel between the two detectors. Second,

the downstream production is modeled with GFluka [156], not Fluka05 [129, 130], our preferred

Figure B.1: The vertex of the production (immediate) parent of antineutrinos interacting in the Near
Detector in the neutrino-mode beam. Note the log scales.
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Figure B.2: The Near (color) and Far (black) Detector charged-current antineutrino spectra broken down
by parent production region. The left shows the spectra from neutrino parents produced upstream and the
right shows the spectra from neutrino parents produced in the decay pipe. The Near and Far spectra are
scaled to the same number of events summed across the two histograms. Note that the decay pipe spectrum
has much larger Near/Far differences.

and tuned hadroproduction model.1 As a consequence, this so-called downstream production is a

significant systematic error for the analysis of neutrino-mode antineutrinos.

In order to constrain the uncertainty on decay pipe production, the Near Detector data is used.

The Near Detector Monte Carlo is first reweighted using a special set of beam tuning weights

generated using the most recent version of the beam fits but without using the ν̄µ Near Detector

spectrum (NA49 data is used as a constraint on the π+/π− ratio). Then, the decay pipe component

is scaled up or down in order to make the total number of Monte Carlo events match the data. This

scale will then be taken as the systematic uncertainty on the decay pipe. This gives a ‘worst case’

systematic uncertainty – the true systematic error will almost certainly be less than this value. The

range of the integral to get the total number of events starts at 0 and ends at 13 GeV. This value

was chosen because it gives the largest systematic error band, consistent with the idea of bracketing

the decay pipe systematic, rather than trying to estimate an exact 1σ uncertainty.

However, there are systematic uncertainties on the Near Detector spectrum. In order to avoid

having these uncertainties mask a discrepancy that might be due to the decay pipe, the above

evaluation is done with all other systematics applied (see Section 5.4), where their effects are summed

in quadrature. By looking at the two extremes of the systematic shifts, the possible range of decay

pipe scalings allowed by the Near Detector data plus its systematics can be determined. This gives us

a systematic uncertainty on the decay pipe events of −100% and +50%. The effect of this systematic

on the Far-over-Near ratio can be seen in Figure B.6.

1For the antineutrino-mode analysis, the beam simulation does use a consistent hadroproduction model (see F),
but since antineutrino-mode antineutrinos are focused, decay pipe production is not an important systematic in that
sample.
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Systematic Shift
SKZP +6.4% −6.4%
Combined MaRes +5.0% −4.3%
NuBar DIS 2 +4.4% −3.8%
NuBar Overall +3.8% −3.8%
Combined Overall +3.5% −3.5%
Backgrounds +2.7% −2.7%
Combined DIS 2 +2.3% −2.3%
Combined MaQE +2.0% −1.7%
NuBar Res +1.9% −1.9%
NuBar QEL +1.1% −1.1%
Combined DIS 3 +0.8% −0.0%

Table B.1: The systematic errors on the Near Detector, in order of their effect on the total number of Near
Detector events. The systematics that shift events between bins but do not change the total number of
events (e.g. energy shifts) all have very small effects (less than 1%) and are excluded from the table.
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Figure B.3: The Near Detector spectrum with no systematics applied. The data is the black points, the
original spectrum, with only the SKZP weights applied is the dashed line, the non-decay pipe component is
in blue, the scaled decay pipe is in red, and the scaled total spectrum is in black. The shift needed in order
to match the Monte Carlo to the data in this case is −27%.
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Figure B.4: The Near Detector systematic error bands, obtained from adding the effects of all systematics
in quadrature. The significant systematics are broken down in Table B.1.
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Figure B.5: The Near Detector spectrum with all systematics applied. The left figure has all positive
systematics and the right has all negative systematics. As in Figure B.3, the data is the black points,
the original spectrum, with only the beam tuning weights applied is the dashed line, the non-decay pipe
component is in blue, the scaled decay pipe is in red, and the scaled total spectrum is in black. The shifts
needed in order to match the Monte Carlo to the data in these cases are −100% and +50%.
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Figure B.6: The Far-over-Near ratios for the two calculated systematic errors from Figure B.5. The effects
on the Far-over-Near ratio give a sense of how significant this systematic will be for the final analysis.
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Appendix C

Feldman-Cousins Method for the
Antineutrino Analyses

C.1 Introduction

This appendix describes how the Feldman-Cousins method [151] for determining confidence intervals

was implemented for the antineutrino analysis. Using Feldman-Cousins is necessary for several

reasons. First, the effects being studied exist near physical boundaries where gaussian confidence

intervals are too conservative (cover more than the expected fraction of experiments for a given

confidence level). For oscillations there are boundaries at sin2(2θ̄23) = 0, 1 and |∆m2
atm| = 0 and

for transitions there are boundaries at transition probabilities α = 0, 1. Second, when the statistics

in the spectrum are low, the oscillation formula has a degeneracy between fast oscillations with

a high |∆m2
atm| and a low |∆m2

atm| with sin2(2θ̄23) ≈ 0.5. This degeneracy creates the opposite

effect as the physical boundary: the gaussian confidence intervals are too optimistic (do not cover

enough experiments). Third, the Feldman-Cousins prescription allows us to introduce the effects of

systematics into our confidence intervals and contours.

C.2 The Feldman-Cousins Method

The basic principle of the Feldman-Cousins method is to determine, using a Monte Carlo simulation,

what −2∆ lnL gives the correct coverage (68%, 90%, etc.) at different values of the true parameters.

For example, a −2∆ lnL = 2.71 usually gives 90% coverage in a one-dimensional likelihood, but near

a physical boundary, the fake experiments that would have had unphysical best fits “pile up” at

the boundary, meaning the −2∆ lnL = 2.71 will cover more than 90% of the experiments. Thus,

to get the right coverage on the confidence interval at this point, a −2∆ lnL < 2.71 is needed. The

solution is to start with the right coverage (in this case, 90%) and work backwards to see what value

of −2∆ lnL this corresponds to. The effect can be interpreted as the physical boundary providing
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extra information, meaning the confidence interval can be drawn a little smaller. An example of this

effect in the transition analysis can be seen in Figure C.1.

 log LΔ-2 
0 2 4 6 8

Ps
eu

do
 E

xp
er

im
en

ts

1

10

210

310
 = 0.6α

 = 2.63
90

 log LΔ-2 

Figure C.1: Example −2∆ lnL distributions for two transition probabilities. On the left is the distribution
for α = 6.67×10−3 very close to the physical boundary at 0. On the right is the distribution for α = 0.6, well
away from any boundaries. The black vertical lines are at −2∆ lnL = 2.71 in both plots, the canonical 90%
coverage value. The blue lines show the actual −2∆ lnL required to encompass 90% of fake experiments.
On the right, away from the boundary this value is very close to the canonical value. On the left, however,
many experiments are piled up at lower −2∆ lnL’s so a −2∆ lnL = 1.41 is sufficient to cover 90%.

The prescription for using these empirical coverages is simple. Once a grid of −2∆ lnL’s has

been produced, we can use it to determine the correct contour for our actual experiment. For the

real data, we generate a −2∆ lnL surface from the best fit point. For each point on the surface of

this experiment, if the value of −2∆ lnL is below that on the corresponding point on the Feldman-

Cousins surface, then that point is inside the contour. Otherwise, if the point on the experimental

grid is higher than the Feldman-Cousins point, then that point is outside the contour. In practice,

this means that the Feldman-Cousins surface is simply subtracted from the measured surface, and

all the zeros determine the contour.

C.3 Generating Pseudo-Experiments

The crucial step in the method is how the pseudo-experiments are generated. There are two parts

of the process: the first is to generate a Far Detector prediction based on the Near Detector Monte

Carlo. The second is to generate the individual Far Detector fake experiments based on this predic-

tion. Two different methods were tried for both steps: a faster, simpler method and a method that

allowed systematics to be added (discussed further in Section C.4).

The first method tried for step one is to use a static reconstructed energy spectrum from Near

Detector Monte Carlo as the input to the matrix method (see section 5.3). The more complex method

is to loop over a reduced library of the Near Detector Monte Carlo to generate a Near Detector fake

data histogram for each fake experiment. Since both methods use the same set of selected events,

the histogram is produced using the same set of energies and weights. So, if systematics are not
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Figure C.2: The two Feldman-Cousins methods compared with each other, the Matrix Method prediction
and with oscillated Far Detector fake data. Everything is consistent to within a few percent. The error bars
in the middle plot (FC/Prediction) are too small because the error in the shared denominator (Prediction)
are not included. This is because the statistical error on the prediction is difficult to calculate.
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applied, the methods give identical results. This newly generated histogram is used as the Near

Detector input data for the fitter.

Two different methods were tried for the second step and show consistent results. The ‘Fluctu-

ations’ method is to apply Poisson-fluctuations to each bin of the predicted spectrum (that is, set

each bin’s content to a random number drawn from a Poisson distribution with a mean of the bin’s

contents). This fluctuated histogram would then be the pseudo-experiment the fit was performed

on. The advantage of this method is that it is simple and fast to implement, and is thus not prone

to errors. The disadvantage is that it is difficult to apply systematic shifts (this will described in

greater detail in C.4).

The ‘Sampling’ method is to sample actual, selected ν̄µ events from the Far Detector Monte

Carlo. The events are separated into several different samples: signal ν̄µ’s, mis-identified νµ’s,

neutral currents, and ντ/ν̄τ ’s. The true energy spectra1 for each of these samples is predicted using

the matrix method (the separated spectra are taken before being combined into a final prediction

as the method usually does). Then, for each sample, the total number of events to be drawn is

determined by Poisson-fluctuating the integrated number of events in the prediction. The events are

drawn at random, and to ensure that the drawn events have the right energy distribution, rejection

sampling [35], a well-known statistical technique, is used. The final pseudo-experiment is constructed

using the reconstructed energies of the events which were chosen based on their true energies.

Figure C.2 shows the two Feldman-Cousins methods compared with both the Matrix Method

prediction and the oscillated fake data. The Feldman-Cousins histograms are the average of 50,000

pseudo-experiments. Both methods are consistent with each other and are reasonably close to the

prediction and fake data (a few percent variation).

C.4 Applying Systematics

The principle for applying systematics for Feldman-Cousins is simple: in each fake experiment,

pick a random value for each systematic uncertainty and incorporate these shifts into the pseudo-

experiment. For systematics like normalization, this is very simple no matter how the pseudo-

experiments are produced – simply scale the prediction before fluctuating or sampling (essentially,

scaling the number of events drawn). For others it can be more complicated – they are described in

Table C.1.

Since the normalization systematic was easy to implement for both methods, it was used as a

cross-check to make sure the systematics were being applied properly. The resulting surfaces (four

in all, new and old method with and without normalization), are shown in Figure C.3 (Transitions

were used as a test since the 1-dimensional surfaces are easier to compare). As you can see, the

1Reconstructed energy is used for the neutral currents since this defines their behavior in the detectors and the
true energy can vary wildly depending on how much energy is taken away by the exiting neutrino.
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Systematic Size ND Method FD Method

Normalization 4% -
Scale the number of events

drawn for all samples.

Backgrounds 50%
Scale the weight of each

background event.

Scale the number of events
drawn for the background

samples.
Track Energy Range 2% Modify the energy component before adding to the

Overall Shower Energy 10% reconstructed energy histograms.
Track Energy Cuvature 4% - FD Only
Relative Shower Energy 3.3% - FD Only

NuMuBar Cross-Section 1σ
Scale the weight of each
event in true energy as
shown in Figure C.4.

Use the weights in true
energy shown in Figure C.4

to scale acceptance.

SKZP 1σ
Scale the weight of each

event using its associated
error.

Use each event’s error to
scale its acceptance
(described below).

Decay Pipe 37%
Scale the weight of decay

pipe events.
Scale the acceptance of

decay pipe events.

Table C.1: Table of systematics and how they are implemented.

systematics had a clear affect, and the new and old methods are consistent with each other with

and without systematics.

Systematics that would be applied by changing the weights of events in a high-statistics histogram

(like the Near Detector) need some care in application to the Far Detector where only a small number

of unweighted events are used. It is easier when the events being weighted can be treated as a group

(i.e. the background scales); the total number of those events can be scaled. When the scaling needs

to happen on an event-by-event basis, care needs to be taken to account for the two separate effects

of the systematic: changing the likelihood of having that particular event and changing the total

number of events. If an event is drawn that needs to be weighted, two rejection probabilities are

calculated: one unmodified, and one systematically shifted up or down. The event is rejected based

on the shifted probability. If the event would have been accepted otherwise but is rejected because

of the systematic, the total number of events drawn for this pseudo-experiment is reduced by one.

Conversely, if an event that would have been rejected is accepted because of this systematic, the

number of events drawn is increased by one.

For the decay pipe, there was an option to either do the acceptance scaling event-by-event or

treat it as a separate sample like the backgrounds. While the ‘Separate Sample’ method was not

chosen for production because it required modification of much of the matrix method chain and thus

introduced numerous possibilities for small bugs, it was implemented temporarily as a cross check.

Figure C.5 shows the predictions from both decay pipe methods compared to each other. It is clear

that they give basically identical spectra.
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decay pipe systematic has been forced to be exactly +37%, not varied, so its effects can be investigated.
They clearly give results consistent to within 2%.

C.5 Feldman-Cousins Surfaces

C.5.1 Oscillations

The 90% Feldman-Cousins surface for oscillations is shown in Figure C.6. Near the physical bound-

aries the empirically-corrected sensitivity is better than the sensitivity assuming gaussian errors, as

expected. The loss of power from the degeneracy between fast oscillations and sin2(2θ̄23) ≈ 0.5 is

also apparent in both areas of parameter space.

C.5.2 Transitions

The final transitions Feldman-Cousins surface with systematics and 50,000 experiments per point is

shown in Figure C.7. We see the expected drop-off near the physical boundaries. You can also see

that across most of the range, the FC curves sit a little bit above their nominal values (dotted black

lines). This increase is from the inclusion of systematics and will lead to slightly wider confidence

intervals.

Figure C.8 shows what range of confidence intervals we might expect using these surfaces on

experiments with no transitions happening. Both the lower and upper limits are shown. 90.6% of

the lower limits are zero meaning the coverage is nearly perfect (we would expect 90% of the intervals

to contain the true value). The upper limits of the 10,000 experiments range from α = 1.1% to 27%,

though the typical values (middle quartiles) range from 3.9% to 9.5% with a median of 6.5%.
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Figure C.8: Above is pictured the upper (blue) and lower (red) limits of the 90% confidence intervals of
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Appendix D

Detector Edge Study

D.1 Introduction

A discrepancy was observed between the data and the simulation in where the west edge of the Near

Detector appeared to be. The first evidence of the problem can be seen in Figure D.1. In it, the end

points of positive tracks are plotted in x. Positive (ν̄µ) tracks are used because they are defocused

towards the outside edges of the detector. By placing a selection −0.82 < y < 0.82, the vertical west

edge of the detector was selected (see inset in Figure D.1). When data (black) and Monte Carlo

(red) are compared, a large discrepancy is apparent: the data extends further out in x than the

Monte Carlo.

Figure D.1: The track end point in x in meters for positive tracks in the Near Detector. Only end points
falling in the colored region of the inset are included, selecting the vertical west edge of the detector.
Simulation is shown in red and data in black. The data extends several centimeters past the end of the
simulation.
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D.2 Plane Types

The first question to answer is what planes are being affected by this problem. For reference, Fig-

ure D.2 shows a drawing of how the Near Detector planes are constructed from modules. Figure D.3

contains the same events as Figure D.1, but separated by plane type: partial and full, U and V. It

is clear from the figure that the discrepancy is only in the full planes, not the partial planes, though

it is not isolated to either orientation. Figure D.4 shows the track end positions separately for the

calorimeter and the spectrometer, but now looking at the two diagonal segments on the west side.

The discrepancy is apparent in these angled sections, but it is not isolated to either the calorimeter

or the spectrometer.

D.3 U and V

x is not a fundamental property of the geometry of the detector: it is naturally oriented in U and

V. Again, it is simpler to look at flat edges, so a U cut was applied to the V plots and a V cut

applied to the U plots so only the flat edges are selected. The analyzed regions are shown in insets

in Figure D.5. This figure also shows that the effect can be isolated by looking only at track end

positions along the length of the strips. Note, the plane only measures position based on which strip

a hit occurs in and cannot measure position along a strip. This means the effect only occurs in the

direction not directly measured by the plane. In the dimension the plane actually measures, there

is excellent agreement between data and simulation as alignment has been performed on the data

Figure D.2: The types of planes in the Near Detector with their component modules.
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Figure D.3: These plots show Figure D.1 broken up into full and partial U and V planes. As you can see,
the discrepancy appears equally in Full U and Full V planes but not in either Partial U or Partial V planes.

Figure D.4: Here we are looking at V and U planes (from the colored segments of the insets, again looking at
the flat edges) broken up into calorimeter and spectrometer. The discrepancy appears in both z segments,
so it is not an effect of the lack of alignment in the spectrometer.
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in this direction.

There is a second effect apparent in Figure D.5 that strongly suggests a mechanism that might

produce the difference in track end position observed. Not only do data hits extend further out in

the direction parallel to the strips, there are also more data tracks ending on those planes. The

effect is striking since the data and simulation follow each other while they rise, the Monte Carlo

just hits a cut-off earlier. The combination of these effects suggests that the strips in the simulation

do not extend as far out relative the perpendicular plane as they do in the data. Figure D.6 shows

an illustration of what the effect might look like.

However, there are several underlying effects that could produce this result. For example, the

strips could be too short in the Monte Carlo, or the, strips could be offset along their length, or the

plane itself could be offset. Additionally, the extra length could be an effect of the reconstruction

(reconstructing points outside the physical detector).

One way to disambiguate an offset in strip position and an overall change in strip length is by

looking at the other end of the strips. Unfortunately there is no data for the far end of the K and

Figure D.5: Viewed in U and V directions (as opposed to the linear combination of the two) features of
the discrepancy become apparent. When position is measured along a plane’s axis (perpendicular to the
direction of the strips) the Data and Monte Carlo agree well on where each strip is located, and thus where
the detector edge is. However, when position is measured perpendicular to a plane’s axis (along the length
of the strip), the discrepancy from Figure D.1 is clear. Note also that there is more Monte Carlo in the top
plots and more Data in the bottom plots. Not only is there more data in the bottom plots, but the data
and Monte Carlo curves follow each other and the Monte Carlo just falls off sooner than the data.
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Figure D.6: A proposed explanation of the effects seen in Figure D.5. If the Monte Carlo strips did not
quite extend to the edge of plane but the real strips did, it would produce the effects seen. First, the data
edge would be further out than the Monte Carlo edge. Also, there would be more data hitting perpendicular
strips since there is more strip at that edge than in Monte Carlo. Essentially, the Data particle, after passing
through a parallel strip would go on to hit one more perpendicular strip while the Monte Carlo would appear
to just stop in the parallel strip since there is no perpendicular Monte Carlo strip to hit that far out.

Figure D.7: These are the top and bottom of the detector in y with a selection on x as shown in the inset
to get the flat segments. Referring to Figure D.2, U Top is the reflective end of the Ju module, V Top is
the readout end of Mv and Nv modules, U bottom is the readout end of the Mu and Nu modules, and V
bottom is the reflective end of the Jv module. While there is no apparent discrepancy in the y endpoint,
note that there appears to be a small excess of data in the readout ends (V Top and U Bottom) and a small
deficit of data in the reflective ends (U Top and V Bottom).
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Coordinate Plane Modules
U Full U Ju
V Full V Jv
U Full V Kv and Lv
V Full U Ku and Lu

Table D.1: The correspondence between plots in Figure D.5 and the modules in Figure D.2.

L modules, but there is data at the top and bottom of the detector which can tell us about the

J modules. The plots can be seen in Figure D.7. There is no clear offset in the top edge of the

detector.

D.4 Physical Measurements

There is an example Near Detector plane in the MINOS surface building at Fermilab. Some mea-

surements were taken of the lengths of modules on that plane to compare with what we are seeing

in the data. The length of a full Lu strip was measured to be 376 cm and the distance to the edge

from the center of the coil hole (the Near Detector origin) was 262 cm (see Figure D.8). The 376 cm

is tolerably close to the value for strip length in the simulated geometry of 375.1 cm. To compare

the distance from the origin measurements, look at Figure D.9.

Figure D.8: Measurements taken of the example plane in the MINOS surface building.
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Figure D.9: The plots are identical to those in Figure D.5. The blue lines drawn on the plots mark the
measured end of the plane from the surface building. While this measured point lines up with the peak of
the parallel strips, it doesn’t clearly agree with either the peak or edge of either Data or Monte Carlo for
perpendicular strips.
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D.5 Monte Carlo “Measurements”

Some “measurements” were also taken by looking at different variables in the Monte Carlo. The

goal of these studies was to determine if the detector edge discrepancy existed at the truth level

or if it was only introduced during reconstruction. Two different methods were looked at, both of

which show that the Monte Carlo truth agrees with the Monte Carlo reconstruction and they both

disagree with the data.

First, true vertices in the scintillator were examined. Since the material of the interaction isn’t

stored, only the Z of the interacting nucleon, the scintillator could not be selected perfectly. Instead,

interactions in carbon (Z=6) were selected which gives mostly scintillator and a little bit of steel

Figure D.10. These results are in Figure D.11.

The second method used was to look at the DigiScintHits arrays from the MCNtuple tree. Since

these record the true positions of energy depositions in the detector, they also probe the extent of

the detector as seen by the Monte Carlo at the truth level. The results in Figure D.12 clearly show

that the Monte Carlo truth is consistent with the Monte Carlo reconstruction on the position of the

edge of the detector.

Figure D.10: True vertices whose Z=6, meaning carbon. This selects primarily interactions in the scintillator
(red boxes), but also accepts a few interactions in the steel (blue boxes). Note that the steel extends well
out past the end of the scintillator.

D.6 Conclusions

The large discrepancy in end positions of tracks along the west side of the detector comes from the

fact that the simulated strips do not extend as far out relative to perpendicular strips as the data

strips do. The best hypothesis for how this occurred is that the simulation is based on the detector
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Figure D.11: The true vertex positions in the Monte Carlo. There appears to be a fall off at 2.9 m
corresponding to the edge in Monte Carlo consistent with earlier plots (Figure D.1). The few events that
extend out in x past 2.9 m are the still interactions (Figure D.10).

Figure D.12: Again the plot from Figure D.1 is shown. Now, overlaid on that plot is the blue shaded region
which shows the locations of DigiScintHits. These are the true locations of all energy deposition in the
detector. The Monte Carlo appears to be consistent with itself in saying the detector ends at 2.9 m.
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as designed, rather than as-built. Speculating a little more, here is a possible mechanism. There

was a guide that went through the coil hole cut in each plane for positioning the scintillator on the

steel planes they were attached to, but this guide was not the full size of the coil hole. Maybe as

each scintillator plane was put in place, it was not centered on the guide but rather pushed all the

way to one side, so the guide and coil hole socketed into place. This would introduce a shift in the

x-direction of the planes, but a particular mechanism is difficult to prove.

Whatever the mechanism, the effect makes no difference to the analyses. First, the shift is only

apparent along the direction that is not used to measure the track position in the planes where it

occurs, meaning the effect is not producing shifts in the positions of lots of hits. In the direction

where the plane does give position information, everything has been aligned and agrees well between

data and simulation. And whether a track ends in strips parallel or perpendicular to the detector

edge, it is still going to be classified as an exiting track so the potential extra hit would not effect

the measurement of the track’s energy.
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Appendix E

Validation of the Reconstruction
Upgrade

Between the neutrino-mode and antineutrino-mode analyses, the reconstruction package was up-

graded from version “Cedar” to version “Dogwood.” One of the major upgrades in Dogwood was

removing the “range bias” from the track momentum fitter. Previously, curvature measurements

were biased by the range measurement because the track fitting algorithm would use some range

information when determining track momentum from curvature (for more details see Section E.2).

This feature, while it improved the track momentum resolution, made it more difficult to use the

comparison between range and curvature to determine the systematic error on the muon momentum.

In order to help in validation studies, both the range-biased and the unbiased fitters were run in

Figure E.1: Event view of a catastrophic charge mis-id in Dogwood from the Far Detector data. While
the event is clearly curving away from the coil hole in both U and V views, it is reconstructed with p/q =
−13 GeV.
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Dogwood so their output could be compared.

E.1 The Charge Sign Problem

The problem was this: in Dogwood1, long, clean tracks were being reconstructed with the wrong

charge. The problem was first noticed in the Far Detector data with the event shown in Figure E.1.

This event is clearly positive to the eye and to the Cedar reconstruction (p/q = 6.41 GeV), but

Dogwood assigned it p/q = −13 GeV. The problem occurred in about 2% of events with tracks in

the Far Detector – the ratio of positive to negative events in Dogwood became 82% : 18% instead

of 80% : 20% as we had in Cedar. This lead to a 2% decrease in the CC signal and a 28% increase

the NuMuBar background. The tracks affected were typically long, with high q/p significance and

were easily identified by alternative charge-sign selectors like relative angle. Note that this problem

only affected the new unbiased fitter, not the legacy biased fitter (see Figure E.2).

E.2 The Charge Sign Fix

After some detailed investigation of the failed events by Jim Musser, the cause was eventually

determined. Part of the change in going to an unbiased fitter was removing a 250 MeV cut-off in

energy for a hit to be included in the fit. That is, as the fitter moved along a track if it decided

that a track’s energy had dropped below this cut-off energy, it would stop trying to fit any further

hits. However, sometimes the last hit or two on the track (which would previously have been cut)

would unduly influence the Kalmann filter and flip the charge of the fitted track so strongly that

the backward pass along the track could not recover the correct charge. This was at least partially

caused by a bug in the dE/dx formula used by the Kalmann fitter which only became significant at

low energy.

This fix became known as Dogwood2. However, while it fixed the charge-id problem, it introduced

another significant problem with track length. You can see an event-by-event comparison of track

lengths in Dogwood2 and Dogwood1 in Figure E.3. In the Dogwood2-Dogwood1 comparison (shown

in blue) there are clearly two peaks – a narrower one I would call the “expected disagreement” and

the large peak with 10 or more planes missing in Dogwood2.

To understand where this problem comes from some more details on the track fitting algorithm

are necessary. The track fitter begins with a found track that an early rough reconstruction stage

identifies as a candidate. The Kalmann fitter then travels back and forth twice along this track,

deciding as it goes whether or not the hits in the found track actually belong on the fitted track. In

principle, and frequently in practice, the fitter does not use all of the hits on the track – this is in

fact the essence of removing the range bias. What the range bias did was force the Kalmann fitter
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Figure E.2: Shown in color above are the track length (top row), |q/p| / σq/p (called ‘AbsSigQP QP’, middle
row), and relative angle (bottom row) distributions for events where the new unbiased and ‘Cedar’-like biased
fitters disagree about the charge of the track. Also, not to scale, are the distributions for events where both
fitters get the charge sign wrong (this is how these distributions look for ‘typical’ charge mis-ids). They are
divided into true (Monte Carlo) CCνµ (left column) and CCν̄µ (right column). When the two fitters disagree
about the charge sign of the track (red and blue histograms), the unbiased fitter (red) is wrong far more
often. Beyond that, the tracks the biased fitter is getting wrong tend to have longer track lengths, higher
|q/p| / σq/p, and more signal-like relative angle than typical mis-ids. That is, the biased fitter is getting the
charge wrong on good-looking tracks.
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to keep adding to its estimated track energy until it made it to the end of the found track. However,

none of this should affect the track momentum from range since that is based on the found track,

not the fitted track.

But clearly the momentum from range was somehow being affected. After some more investiga-

tion, Jim Musser was able to identify the problem. Sometimes the Kalmann fitter decides that the

last point on the found track is not actually part of the track. In this situation, the found track

should be unaffected, or at worst just lose one hit. However, due to a quirk in how the found and

fitted tracks were stored, when the last hit was dropped it caused the found track to only contain

the hits in the fitted track. After a change in how track hits were stored, this problem was also

eliminated.

This fix became Dogwood3; you can see its effect in the red curve on Figure E.3. Now in

Dogwood3 rather than having a lot of tracks that were way too short, we in fact had tracks coming

out longer than they had been in Dogwood1. When we looked specifically at these longer tracks, it

turned out the energy resolution was better than it was before, meaning the longer length is in fact

the correct one. Apparently this track length bug had existed previously at a much lower level and

simply wasn’t noticed until Dogwood2 brought it to prominence. Previously the effect would have

been much smaller since the range bias caused fits to almost always use all of the found track.

E.3 Dogwood3

We have seen that Dogwood3 fixes the range problem that Dogwood2 introduced, but have we fixed

the original Dogwood1 charge sign problem? The answer can be found in Figure E.4. These figures

show a direct comparison between Monte Carlo events matched event-by-event between Cedar and

Dogwood (unlike Figure E.2 which compares two different Dogwood fitters). You can see in both

the Near and Far Detectors, in both track length and (q/p) / σq/p, that the red curve (Dogwood1

gets the charge wrong and Cedar gets the charge right) has an extra component at longer lengths

and higher confidence than its converse shown in black. This is the charge-sign problem we want to

fix. By comparison, the blue curve (the Dogwood3 equivalent of the red curve) is in good agreement

both with its converse (shown in green) and the Dogwood1 black curve.

E.4 Ancillary Problems

There was an additional tracking bug that was discovered as part of this process. It turned out that

the legacy biased fitter was ignoring all the hits in the Near Detector spectrometer. This, as might

be expected, caused the fitter performance to degrade drastically the more time a track spent in the

spectrometer. This bug is also now fixed in Dogwood3.
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Figure E.3: On the left in blue is the event-by-event difference in track length compared between two identical
MC samples reconstructed in Dogwood2 and Dogwood1. In red is the same comparison, but between
Dogwood3 and Dogwood1. On the right is the energy resolution in Dogwood1 (black) and Dogwood3 (red)
for those tracks that got longer in Dogwood3 (the small red peak on the left). It is clear that Dogwood3 is
reconstructing their energy better than Dogwood1 is, so the longer track length must be the right one.
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Figure E.4: Above are the track length and (q/p) / σq/p distributions for events where Cedar and Dogwood
disagree about the track charge sign. The asymmetry we see in Dogwood1 (the red vs. black), where there
is a subset of events with long tracks and high (q/p) / σq/p that only Dogwood gets wrong, is now gone in
Dogwood3 (blue vs. green).
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Appendix F

Technical Aspects of Flugg

F.1 Introduction

This appendix describes the technical details of the newest version of the flux simulation for the

NuMI beam line. Section 3.1.4 gives an overview of simulating the NuMI beam in general as

well as the motivations for upgrading from the previous simulation. This appendix gives detailed

instructions for installing and running the NuMI Flugg simulation, detailed information about the

organization and structure of the source code, and tables describing the output data files. It also

includes validation studies which compare it in detail to the previous NuMI simulation.

It introduces two major changes. The previous flux simulation versions used a combination of

Fluka and GEANT3: Fluka to simulate the target and GEANT3 to swim the particles coming off

the target through the rest of the beamline geometry. The new simulation also uses a combination

of Fluka and GEANT, but uses the Flugg [125, 126, 127] package to simulate a GEANT4 geometry

in Fluka. Instead of having a two step simulation process, now all of the geometry is handled by

GEANT and all of the interactions are handled by Fluka. Interactions in the downstream regions

are now handled by the same, more trusted, hadronic interaction model as interactions in the target.

The largest advantage of this change is in the simulation of helium interactions in the decay pipe.

The GEANT4 geometry used is also a significant upgrade from the earlier version. It includes

more detailed descriptions of many of the beamline components (horns, decay pipe window, hadron

absorber, muon monitors) as well as more accurate dimensions based on as-built information where

available.
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F.2 How to Run

F.2.1 Setup and Installation

First, you will need working copies of GEANT4,1 Fluka,2 and Flugg;3 instructions for installing all

three can be found online. You will need to install the first two before installing Flugg. The code

required for g4numi in Flugg can be found in two directories in CVS:

numisoft/g4numi

numisoft/g4numi flugg

After checking out the two directories, run g4numi flugg/scripts/setup.sh. This sets up the

symlinks from the geometry source files in g4numi to g4numi flugg. It also replaces a few source

files in the main Flugg source directory, fixing some bugs that prevent the simulation from running

smoothly.4 Be sure to set up the Flugg environment first. This is necessary so the script can put

the patched Flugg source files in the right location. After this, compile the executable by running

gmake in g4numi flugg/.

F.2.2 Running the Simulation

The process of running Flugg can be somewhat onerous so a script was written that automates the

process. You can find it here:

g4numi flugg/scripts/g4numi fluka.sh

In order to simplify running on a batch system, it does not take command line arguments but instead

uses environmental variables to configure it. Table F.1 lists the required variables and Table F.2

lists the optional ones. The script will automatically create a parent directory based on the beam

configuration and then a sub directory for each run like this:

$DATA/flugg\-le<z position>z<current>i\_run<run period>/Run<job number>

for example,

$DATA/flugg\-le010z185i\_run2/Run109

Since the random seed for each run is based off the run number, individual jobs can be rerun and

will return the same results. Table F.3 shows the files you can expect to find in the job directory of

a successful run.

1GEANT4: http://geant4.web.cern.ch/
2Fluka: http://www.fluka.org/
3Flugg: http://www.fluka.org/content/tools/flugg/
4This is no longer the default behavior. The patched files are still distributed but due to frequent version clashes

they are not automatically copied into the Flugg source tree.
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Variable Example Description

RUN 109
The run number for this job. It defines the
output names and the random seed.

EVTS 500000 The number of protons-on-target to simulate.

PERIOD 2
Run Period (1-4). Periods 3 and 4 have
Helium automatically.

DATA $HOME/data/flugg Directory where files are output.

Table F.1: Required environmental variables for g4numi fluka.sh.

Variable Default Description

CURRENT 185
The nominal horn current in (kA). It is converted to the
actual value internally (e.g. 185 → 182.1 kA).

TARGETZ 10
The nominal target z position in -cm. 10 becomes
−8.9 cm automatically for runs II and III.

STEPL 1.0
The maximum step size in cm. Be sure to include the
decimal point, for example export STEPL="1.0".

SPECIAL -

The contents of special is added to the run type. For
example, if SPECIAL=" sh", then the files would output
to flugg le010z185i run1 sh/.

LOWTH - Set to “yes” to remove the 1 GeV tracking threshold.

TARGFILE -
Set to “yes” to produce target hadron ntuples in addition
to the neutrino files.

Table F.2: Optional environmental variables for g4numi fluka.sh.

F.2.3 Inside the Scripts

In addition to basic bookeeping tasks (creating and moving to directories, renaming files, etc.), the

script does three major things. First, it creates the Fluka input file (g4numi.inp) that configures

many aspects of the simulation. Second, it runs the executable using the rfluka script provided in

the Fluka distribution. Third, it conserves disk space by converting the output from ascii to the two

binary file formats we use (hbook and root).

The command used to run the executable is:

$FLUPRO/flutil/rfluka -e $FLUGGINSTALL/bin/Linux-g++/mainG4NuMI -N0 -M1 g4numi

This tells rfluka to use the mainG4NuMI executable, run 1 job starting at run number 0 (this is so

that the random seed given in the input file is used and Fluka doesn’t look for an already existing

random seed) and to use the g4numi.inp input file. rfluka creates a temporary directory with the

name fluka <pid> in the job directory (.../Run<job number>). This is where you will find the log

files and partially completed output files for jobs that crash or are still in progress.5 Some of the

filenames will be different from those in a finished run because rfluka renames the files when the

job completes and g4numi fluka.sh renames some of them again, but it should still be relatively

5You can identify the crashes since they will have core dumps (core.<pid>) if your system allows them.
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File Description

flugg le010z185i run2 109.ntp The neutrino ntuple in hbook format.

flugg le010z185i run2 109.root The neutrino ntupe in root format.

target109.ntp
The target hadron ntuple in hbook form.
(Optional)

target109.root
The target hadron ntuple in root form.
(Optional)

flugg le010z185i run2 109.out
The standard out from the Fluka parts of
the simulation.

flugg le010z185i run2 109.err
The standard error from the Fluka parts of
the simulation.

flugg le010z185i run2 109.log
The standard out and error from the
Flugg/GEANT parts of the simulation.

g4numi.inp
The Fluka input file created by
g4numi fluka.sh.

runConfig.inp
The geometry configuration file used by the
(GEANT part) of the executable.

g4numi001 flukaMat.inp
The Fluka material configuration created
by Flugg (see Section F.2.3).

g4numi001 Volumes index.inp

File created by Flugg that gives the
assosciation between Fluka region numbers
and GEANT names.

Table F.3: Output files found in the directory of a successful job. As an example the files for Run 109 of a
le010z185i, Run II job are shown.

simple to identify the files you care about.

The Fluka simulation does not write directly to binary data, it instead writes one or two ascii

files (depending on whether the target ntuple is being produced) which are then converted to the

two binary formats with the following scripts/programs in g4numi flugg: root/fill flux.C,

root/fill target.C, hbook/ascii2hbook beam, hbook/ascii2hbook target. The former two

are root scripts and the latter two are actually small compiled Fortran programs (they should get

compiled when you compile the main executable so you should not have to worry about them). The

ascii files are only removed when both the hbook and root files are produced successfully.

The input file created by this script configures many aspects of the simulation. The input file

starts with a series of cryptic commands (called ‘cards’ in Fluka jargon), like USERDUMP and MAT-PROP

which are included in order to activate pieces of user written code. There are also cards to turn off

particles we do not care about (electrons and photons). This part of the input file is read in from

g4numi flugg/g4numi.start and is unlikely to need to be changed by the user.

The next part of the input file assigns materials to regions of the geometry. This part is read

in from a file generated automatically by Flugg. This is why, under normal circumstances, Flugg

simulations need to be run twice, first to produce this file and second to do the full simulation.6

For the geometry as it exists in CVS, these material assignment files are generated ahead of time

6This is described in more detail at the Flugg website, http://www.fluka.org/content/tools/flugg/node8.html
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and can be found in g4numi flugg/g4numi flukaMat <name>.inp. If you make a change to the

geometry that changes the number of regions (adds/removes) or changes the material of a region,

you will need to add your own flukaMat file and edit g4numi fluka.sh to read that file in instead.

The easiest way to get the file would be to run the script as usual and stop the processing by hand

after 30 seconds or so (no reason to run it longer since its results will be nonsense with the wrong

materials file). You can then find the correct flukaMat.inp file in the <flugg run dir>/Run<process

no>/fluka <pid> directory.

After the material definitions comes the proton beam configuration. The energy and divergence

are always the same, though the size of the beamspot changes for different run periods. The beam

starts at −6 m to make sure it starts ahead of the target for all beam configurations. After the beam

are a few settings turned on or off by some of the environmental variables described in Table F.2.

These cards do things such as set the step size, turn off multiple scattering, etc. The final entries

of the input file set the random seed, set the number of protons to simulate, and call the user code

that opens and closes the output files.

In addition to the main g4numi.inp file, g4numi fluka.sh also produces a very small configura-

tion file called runConfig.inp that the executable reads to determine some parameters that affect

how the geometry is constructed (run period, target position, horn current).

F.3 The Code

F.3.1 Overview

The Flugg simulation code falls into two broad categories: the main simulation, written in Fortran

using Fluka, and the geometry description, written in C++ using GEANT4. The basic idea for the

interaction between these two parts is this: Fluka performs the actual simulation (performs particle

interactions, tracks particle properties, writes output files), but when Fluka goes to make a query

about the geometry, the Flugg code uses wrappers to pass questions like “Where am I?” and “How

far is it to the region boundary?”off to GEANT4.

Here, in broad strokes, is how the simulation proceeds from primary proton to output neutrino.

For more details see the referenced sections. The simulation begins with a primary proton defined in

g4numi.inp (Section F.2.3). When the primary proton enters the target region, its initial properties

are recorded by FLUSCW and are used for all the particles which come from this proton. While in

the target, the proton interacts, producing potentially many secondaries. As these secondaries leave

the target volume, their properties are stored in the (NUMI) common block, again by FLUSCW. All

the later generations of particles following from a particular target parent keep a reference to the

target parent’s entry in the common block in an ISPUSR variable. This way, when we get a neutrino

we have the information about the particle that produced it as it left the target. This functionality



172 Technical Aspects of Flugg

reproduces the behavior of earlier simulations where the target was simulated separately from the

rest of the beamline.

Whenever a secondary is produced, inside the target or out, the STUPRF user routine is called.

It performs two important functions: it calls the importance weighting function (see Section F.3.2)

and it keeps track of the particle’s parent information (see Section F.3.3). When the particles leave

the target, they and any secondaries they produce are tracked through the rest of the beamline

geometry. The new g4numi geometry that is used by Flugg contains a much more complete and

detailed geometry description than the previous simulations, including the detailed structure of the

horns and the decay pipe window. It also includes simulations of the hadron and muon monitors.

Whenever one of these tracked particles decays, the USDRAW user routine gets called. This routine

loops through all of the created secondaries. For each secondary that is a neutrino, an entry is written

to the neutrino ntuple. Note, we do not generally use the neutrino direction chosen randomly by the

decay within the simulation but instead use the neutrino’s parent information to calculate a weight

(or probability) for that neutrino to reach the center of the Near or Far Detectors. This weight is

calculated by the NUWEIGHT function. The entries in these ntuples are described in detail in Section

F.4.2.

F.3.2 Importance Weighting and Thresholds

The basic idea behind importance weighting is that we can save disk space and processing time by

not simulating every single one of the lower energy particles but instead only keeping a fraction of

them, but weight that fraction up so that the weighted flux is unchanged. The idea is to more evenly

distribute the statistics and processing time across energies, even though we produce many fewer

high energy particles. A parent’s weight is passed down to its children, which each may apply their

own additional weighting to get their total weight. Every particle has a weight of at least 1, and we

set a maximum weight of 100 to avoid having very rare, ultra high weight events.

Importance weighting is performed by the NUWEIGHT function which is called by STUPRF. The

algorithm is as follows. First, the code decides whether or not a particle should be importance

weighted. ν’s, µ’s, and K’s are not given any additional weight (though they may carry a weight

greater than 1 from their parents). Particles with a total momentum above 30 GeV are also not

given any additional weight. For the remaining particles, a candidate weight, W , is calculated as

W = 30/|Ptot|.

We then check to see if this weight would push the particle’s total weight (Wtot = W ×Wparent)

above 100. If it does, W is set such that Wtot = 100. We then decide whether to simulate or discard

this particle. We do this by choosing a random number R Uniform(0, 1) and if R > 1/W we discard
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the particle.

There is a general tracking threshold throughout the simulation of 1 GeV. That is, if a particle

ever has an energy of below 1 GeV, it is discarded. While this is fine for MINOS, for other off-axis

experiments lower energy fluxes may be needed. This threshold can be turned off completely from

the run scripts with the LOWTH variable (see Table F.2 in Section F.2.2). Alternatively, a different

threshold can be set by editing the PART-THR card which is defined in g4numi fluka.sh.

F.3.3 Particle History Tracking

STUPRF is called whenever a particle is added to the “stack,” the collection of particles that have

been produced but have not been tracked yet. When STUPRF is called, we have both the parent

properties, stored in the TRACKR block, and the child properties, stored in GENSTK block. It is here

that the spare tracking variables described in Table F.4 are filled. The current position, which is the

production point of the secondary, is stored in SPAUSR(1-3). Since each secondary is really just a

potential neutrino parent, this point is also referred to as the ‘(neutrino) parent production point.’

The current momentum of the secondary, that is the momentum at its production point, is also

stored here in SPAUSR(7-9). The parent production medium is recorded based on the properties of

the current region and the parent species is also recorded.

Finally, the SPAUSR(4-6) variables are set based on the parent of the current secondary (or po-

tential neutrino grandparent), i.e. using the TRACKR variables. If the current secondary is a muon,

these variables are set to the grandparent’s decay momentum (the current momentum in TRACKR).

Otherwise, the variables are set to the values in SPAUSR(7-9), that is the production point infor-

mation of the grandparent. This dichotomy occurs because these same three slots need to be used

for two different purposes due to having a limited number of available SPAUSR variables. For muons,

the grandparent decay information is needed in order to calculate the effects of muon polariza-

tion on the neutrino weight at the detectors. For non-muon parents, the grandparent production

point information is needed to fill the tgp* variables in the ntuple in a way equivalent to earlier

simulations.7

F.3.4 Fluka Source Files

for/(NUMI)

A common block to store target parent information.

for/fluscw.f

The FLUSCW routine is called in a number of circumstances, but the one used is that it is called

whenever a boundary is crossed. In particular, it is used to catch when particles enter or leave

7For the production run of files, a bug caused only the decay point to be recorded, not the production point. This
means that the mupar* variables and the tgp* variables all refer to the decay point for all particles.
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Variable Description

SPAUSR(1-3) x, y, z at neutrino parent production (grandparent decay) point

SPAUSR(4-6)
px, py, pz of the neutrino grandparent at the decay point (muon
parents) or production point (hadron parents)

SPAUSR(7-9) px, py, pz at the neutrino parent production point
SPAUSR(10) Particle importance weight
ISPUSR(1) Index in (NUMI) of the target parent
ISPUSR(2) Neutrino grandparent species
ISPUSR(3) Neutrino great-grandparent species
ISPUSR(4) Flag to kill particles. Set to 1 to keep a paritcle and 2 to kill it.
ISPUSR(5) 1 if SPAUSR(4-6) refers to a muon parent
ISPUSR(6) Parent production mode flag (1 = inelastic, 2 = decay, 0 = other)
ISPUSR(7) Parent production medium

Table F.4: Describes how all of the Fluka spare tracking variables ISPUSR[] and SPAUSR[] are used.

the target region. Whenever a proton enters the target region, its information is stored and used

for all target secondaries coming from that proton. Whenever a particle leaves the target region,

its properties are stored in an entry in the (NUMI) common block (the block is reset at each new

proton). The entry number is stored in an ISPUSR variable for that particle which is then passed

on to all later generations coming from that particle. That way, when a neutrino is created we

can access the target parent information. If the target hadron ntuple is being written out, that

happens here as well (the hadron ntuple is described in Table F.8 in Section F.4.2). It contains

all the target secondaries that are added to the (NUMI) common block.

for/gcode.f

A routine that converts Fluka particle codes to GEANT particle codes. It is called while the

neutrino ntuple is being written out in MGDRAW.

for/impwgt.f

Implements the importance weighting scheme. See Section F.3.2 for more details.

for/magfld.f

Passes the Fluka magnetic field call off to the GEANT4 wrapper so that the GEANT4 field is

used. This should not require modification by the user.

for/mcode.f

A routine that converts Fluka material codes to the Gnumi material codes. If a given Fluka

material does not have an equivalent in the Gnumi scheme, the function returns the original

Fluka material multiplied by −1. It is called while the neutrino ntuple is being written out in

MGDRAW.

for/mgdraw.f

MGDRAW has numerous subroutines. The one used in this simulation is USDRAW. It is called after
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every particle interaction. The process of interest is ICODE = 102 which refers to decay. The

neutrino ntuple is written out here (the neutrino ntuple is described in Table F.6 and Table F.7

in Section F.4.2). Whenever there is a decay, the function loops through the secondaries. For

each neutrino found, an entry is written to the ntuple. Note, when the ntuple is being written

the TRACKR variables still refer to the neutrino parent at its decay point, not the neutrino.

for/nuweight.f

The NUWEIGHT routine defined in this file calculates the Near and Far Detector (or any other

position) weights. It takes polarization into account for muons.

for/stuprf.f

The STUPRF routine is called whenever a new particle is added to the stack, i.e. when we get

new particles from a decay or an inelastic interaction. This routine is responsible for the history

tracking or “latching.” The particles own production point information is stored (position and

momentum) along with the momentum of the particle’s parent at either production (muons) or

decay (hadrons)(at the decay point in production files – see footnote on page 173). The variables

are described in Table F.4.

for/usrini.f

This user routine is called when the executable first begins to run. It opens the needed output

ascii files.

for/usrmed.f

USRMED is used normally to apply custom material properties. Here it is used to allow importance

weighting to kill particles. If another part of the code (e.g. IMPWGT) decides to kill a particle,

it sets ISPUSR(4) = 2 which tells USRMED to zero its weight, stopping it from being further

simulated.

for/usrout.f

This user routine is called at the end of the Fluka run. It closes the opened output files.

F.3.5 GEANT Source Files

include/NumiDataInput.hh, src/NumiDataInput.cc

The NumiDataInput class creates a singleton object that holds all of the configurable parameters

of the beamline geometry. It reproduces the functionality of the input files used in the GEANT3-

based Gnumi. It is this class that reads in the runConfig.inp file described in Section F.2.3. It

is used by all the other geometry files.

include/NumiDetectorConstruction.hh, src/NumiDetectorConstruction.cc

This is the starting point for constructing the NuMI geometry and contains the method actually
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called by Flugg (NumiDetectorConstruction::Construct()). NumiDetectorConstruction.cc is

itself mostly just a jumping off point that calls separate methods contained in separate files

that produce the rest of the geometry. These files are listed below and their names are self-

explanatory. Since they are all technically just a part of the NumiDetectorConstruction class

they do not have their own associated header files.

src/NumiBaffle.cc

src/NumiDecayPipe.cc

src/NumiHadronAbsorber.cc

src/NumiHorn1.cc

src/NumiHorn2.cc

src/NumiMaterials.cc

src/NumiSecMonitors.cc

src/NumiTarget.cc

src/NumiTargetHall.cc

include/NumiHornSpiderSupport.hh, src/NumiHornSpiderSupport.cc

A specialized object used for creating the horn support structures.

include/NumiMagneticField.hh, src/NumiMagneticField.cc

Actually contains three classes that describe the magnetic field in the inner conductor, in the

outer conductor, and in the bulk of the horn volume.

Note: These are not all of the source files in g4numi but rather just the subset that are used by

Flugg.

F.4 The Output Ntuples

F.4.1 Available Files

The Flugg flux files can be found at Fermilab. They are available in /minos/data/flux/flugg/

with subdirectories for each run configuration. The available run configurations are described in

Table F.5.
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Beam No. Files Target Target Z (cm) Current (kA) Decay Pipe

le010z000i run1 317 NT01 -10 0 Vacuum
le010z000i run2 449 NT02 -8.9 0 Vacuum
le010z000i run3 440 NT02 -8.9 0 Helium
le010z170i run1 441 NT01 -10 167.3 Vacuum
le010z185i run1 441 NT01 -10 182.1 Vacuum
le010z185i run2 431 NT02 -8.9 182.1 Vacuum
le010z185i run3 442 NT02 -8.9 182.1 Helium
le010z185i run4 442 NT03 -10 -182.1 Helium
le010z200i run1 445 NT01 -10 196.9 Vacuum
le100z200i run1 446 NT01 -100 196.9 Vacuum
le150z200i run2 445 NT02 -150 196.9 Vacuum
le250z200i run1 445 NT01 -250 196.9 Vacuum
le250z200i run2 448 NT02 -250 196.9 Vacuum

Table F.5: Available files at FNAL. You can access them at /minos/data/flux/flugg/.
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F.4.2 File Contents

Variable Description

run Run number (not used)

evtno Event number (proton on target)

Ndxdz
Neutrino direction slopes for a random decay

Ndydz

Npz Neutrino momentum (GeV/c) along the z-axis (beam axis)

Nenergy Neutrino energy (GeV) for a random decay

NdxdzNea Direction slopes for a neutrino forced towards the center of the Near
DetectorNdydzNea

NenergyN Energy for a neutrino forced towards the center of the Near Detector

NWtNear Weight for a neutrino forced towards the center of the Near Detector

NdxdzFar Direction slopes for a neutrino forced towards the center of the Far
DetectorNdydzFar

NenergyF
Neutrino energy (GeV) for a decay forced to the center of the Far
Detector

NWtFar Neutrino weight for a decay forced to the center of the Far Detector

Norig Not used in flux file

Ndecay Decay process that produced the neutrino, see Table F.11

Ntype Neutrino flavor. νµ = 56, ν̄µ = 55, νe = 53, ν̄e = 52

Vx

Neutrino production vertex (cm)Vy

Vz

pdPx
Momentum (GeV/c) of the neutrino parent at the neutrino production
vertex (parent decay point)

pdPy

pdPz

ppdxdz Direction of the neutrino parent at its production point (which may
be in the target)ppdydz

pppz z momentum (GeV/c) of the neutrino parent at its production point

ppenergy Energy (GeV) of the neutrino parent at its production point

ppmedium
Code for the material the neutrino parent was produced in (see
Table F.10)

ptype Neutrino parent species (GEANT codes)

ppvx

Production vertex (cm) of the neutrino parentppvy

ppvz

muparpx Momentum (GeV/c) of the neutrino grandparent at the grandparent
decay point (muons) or grandparent production point (hadrons) (at
the decay point in production files – see footnote on page 173)

muparpy

muparpz

mupare Energy (GeV) of the neutrino grandparent, as above

Necm Neutrino energy (GeV) in the center-of-mass frame

Nimpwt Importance weight of the neutrino

xpoint

Debugging hook – unusedypoint

zpoint

Table F.6: The entries stored in the neutrino ntuple files. There is one entry for every neutrino produced.
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Variable Description

tvx
Position (cm) of the neutrino ancestor as it exits target (possibly, but
not necessarily, the direct neutrino parent)

tvy

tvz

tpx

Momentum (GeV/c) of the ancestor as it exits targettpy

tpz

tptype Species of the ancestor exiting the target (GEANT codes)

tgen
Neutrino parent generation in cascade. 1 = primary proton, 2 =
particles produced by proton interaction, 3 = particles from

tgptype
Species of the parent of the particle exiting the target (GEANT
codes)

tgppx Momentum (GeV/c) of the parent of the particle exiting the target at
the parent production point (at the decay point in production files –
see footnote on page 173)

tgppy

tgppz

tprivx

Primary particle interaction vertex (not used)tprivy

tprivz

beamx

Primary proton origin (cm)beamy

beamz

beampx

Primary proton momentum (GeV/c)beampy

beampz

Table F.7: The entries stored in the neutrino ntuple files. There is one entry for every neutrino produced.

Variable Description

x

Position (cm) of the particle as it exits targety

z

px

Momentum (GeV/c) of the parent as it exits targetpy

pz

type Species of the particle leaving the target (Fluka codes)

weight Weight

gener Generation

momtype Species of the parent of the particle exiting the target (Fluka codes)

mompx
Momentum (GeV/c) of the parent of the particle exiting the target at
the parent decay point

mompy

mompz

protvx

Primary particle interaction vertex (not used)protvy

protvz

protx

Primary proton origin (cm)proty

protz

protpx

Primary proton momentum (GeV/c)protpy

protpz

event Event number

Table F.8: The entries stored in the hadron ntuple files. There is one entry for each hadron that exits the
target volume.
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F.4.3 Useful Codes

Particle
Fluka GEANT PDG

Hadron File Flux File SNTP

γ 7 1 22
e+ 4 2 −11
e− 3 3 11
µ+ 10 5 −13
µ− 11 6 13
π0 23 7 111
π+ 13 8 211
π− 14 9 −211
K0
L 12 10 130

K0 24 10/16 311
K̄0 25 10/16 −311
K+ 15 11 321
K− 16 12 −321
n 8 13 2112
p 1 14 2212
p̄ 2 15 −2212
K0
S 19 16 310

Λ 17 18 3122
Σ+ 21 19 3222
Σ0 22 20 3212
Σ− 20 21 3112
Ξ0 34 22 3322
Ξ− 36 23 3312
Ω− 38 24 3334
n̄ 9 25 −2112
Λ̄ 18 26 −3122

Σ̄− 31 27 −3222
Σ̄0 32 28 −3212
Σ̄+ 33 29 −3112
Ξ̄0 35 30 −3322
Ξ+ 37 31 −3312
Ω+ 39 32 −3334
τ+ 41 33 −15
τ− 42 34 15
ν̄e 6 52 −12
νe 5 53 12
ν̄µ 28 55 −14
νµ 27 56 14
ν̄τ 44 − −16
ντ 43 − 16

Table F.9: The particle codes across the three schemes used in MINOS.
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Code Material

5 Beryllium
6 Carbon
9 Aluminum
10 Iron
11 Slab Steel
12 Blu Steel
15 Air
16 Vacuum
17 Concrete
18 Target
19 Rebar Concrete
20 Shotcrete
21 Variable Density Aluminum
22 Variable Density Steel
23 1018 Steel
24 A500 Steel
25 Water
26 M1018 Steel
28 Decay Pipe Vacuum
31 CT852

Table F.10: The material codes as defined by Gnumi and used in the fluxfiles, old and current.

Ndecay Process

1 K0
L → νe + π− + e+

2 K0
L → ν̄e + π+ + e−

3 K0
L → νµ + π− + µ+

4 K0
L → ν̄µ + π+ + µ−

5 K+ → νµ + µ+

6 K+ → νe + π0 + e+

7 K+ → νµ + π0 + µ+

8 K− → ν̄µ + µ−

9 K− → ν̄e + π0 + e−

10 K− → ν̄µ + π0 + µ−

11 µ+ → ν̄µ + νe + e+

12 µ− → νµ + ν̄e + e−

13 π+ → νµ + µ+

14 π− → ν̄µ + µ−

999 Other

Table F.11: The decay codes stored in Ndecay.
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F.5 Validation

The validation section consists of comparisons of the new Flugg flux (v20) to the previous Gnumi flux

(v19). The first subsection discusses known changes and their effects on the flux. In this section, if a

plots has more than one histogram, the red refers to Flugg and the black refers to Gnumi. If a plot

has only one red histogram, then it is the ratio of Flugg to Gnumi. The second subsection includes

a more comprehensive set of plots looking at the Near Detector energy spectrum and Far-over-Near

ratio for the folowing: νµ in every beam configuration and normal low energy (le010z185i) for every

neutrino species (νµ, ν̄µ, νe, ν̄e) and every major parent species (π±,K±,K0
L, µ

±).

F.5.1 The Focusing Peak

There are, in fact, two observable changes in the focusing peak: a decrease in the height of the peak

and a shift towards higher energy. We can separate out these two effects, and thus get a hint of

their cause, by looking at where the neutrino was produced. Figure F.1 shows the focusing peak

for neutrinos with vertices in the chase and Figure F.2 shows the peak for neutrinos with vertices

in the decay pipe. We see in the former figure that there is just a reduction for a certain energy

range without any shift in the spectrum. What is happening is that some parents that would decay

to neutrinos are instead being absorbed by the additional horn material that has been added in this

simulation. It happens only for a particular range of energy because not all initial parent momenta

will have their paths focused to pass through the extra material. This hypothesis has been confirmed

with a special simulation run without the extra horn material – the peak decrease is not present in

this special run.
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Figure F.1: The focusing peak for neutrinos with vertices in the chase (Vz < 45 m). We see an energy-
dependent decrease in the peak height without any horizontal shift. The integrated number of these events
changes by about 7%. Neutrinos with vertices in the chase makes up about 18% of the focusing peak.



Validation 183

Near Detector Energy
0 1 2 3 4 5 60

1000

2000

3000

(((Nimpwt)*(Nimpwt>0))*(Nwtnear))*((Ntype == 56)*(Vz>4500))

Near Detector Energy
0 1 2 3 4 5 6

0.8

1

1.2

1.4

1.6

(((Nimpwt)*(Nimpwt>0))*(Nwtnear))*((Ntype == 56)*(Vz>4500))

Figure F.2: The focusing peak for neutrinos with vertices in the decay pipe (Vz > 45 m). We see a horizontal
shift the peak without a change in its width or ehight. The mean shifts by 2.3% while the RMS and total
integral change by 0.6% and 0.1% respectively.

F.5.2 Helium and Other Downstream Production

Production due to interactions outside the target was one of the primary motivators for developing

the Flugg fluxes, since this is where the previous version of the simulation had difficulty. Specifically,

the problem was that there was too much high-xf production from interactions in the helium – much

more than was consistent with the data. This was because downstream production was handled by

the obsolete Gfluka package, rather than a modern Fluka version as was used in the target. Now,

with a consistent hadron production model, the new Flugg fluxes do, indeed, show a decrease in

downstream production, especially at higher energies. It is seen for both for νµ’s (Figure F.3) and

ν̄µ’s (Figure F.4). We also see the benefit of this decrease in better modeling of the change in the

flux do to helium. This can be seen, both for νµ’s and ν̄µ’s in Figure F.5.
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Figure F.3: The Near Detector low energy spectrum for νµ’s whose parents were produced outside the target.
We see a significant decrease (24%), especially towards higher energies.
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Figure F.4: The Near Detector low energy spectrum for ν̄µ’s whose parents were produced outside the target.
As with the νµ’s, we see a significant decrease (20%).
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Figure F.5: The ratio of the Near Detector spectrum with helium in the decay pipe to the spectrum with
an evacuated decay pipe for neutrinos (left) and antineutrinos (right). The black line represents the older
GNuMI simulation, the red line represents the newer Flugg simulation, and the blue points represent the
data. As shown, the Flugg-based simulation is significantly better at reproducing the effects of helium seen
in the data.

F.5.3 The Near Detector νe Flux

Perhaps the most significant unexpected change in the switch to the new flux was a large (14%)

increase the νe flux at the Near Detector, as seen in Figure F.6. It turns out the change is more

generally for all neutrinos from muon decay (16% increase). The other νe component, coming from

kaon decays, shows an increase of about 3%, both Near and Far.8 The muon increase is primarily

in the Near Detector: the Far Detector and the non-detector weighted fluxes show more modest

changes (8% increase and 0.1% increase, respectively).

This behavior is suggestive – the fact that the increase is only apparent for detector-weighted

spectra, and is larger for the Near Detector, points us towards the immediate cause: a change in the

Vz (neutrino z vertex) distribution. Figure F.8 shows the Near Detector-weighted Vz distribution.

We can see that the increase in Near Detector flux comes entirely at high-Vz. Figure F.9 shows the

same distribution but without weighting to the Near Detector. We see that what appeared to be an

8Which is actually quite small compared to the 20% increase in low-energy kaon production due to Flugg’s better
handling of low energy interactions compared to Gnumi.
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increase at high-Vz is actually just a shift from lower Vz to higher Vz without a significant change

in overall amount. The change in the overall Near Detector flux comes from the fact that neutrinos

produced towards the end of the decay pipe have a higher probability of hitting the Near Detector

(and thus a higher Near Detector weight) than those produced at the beginning of the decay pipe.

This change in the Vz distribution is not limited to muons, as can be seen in Figures F.10-F.11;

however, the affect on νµ’s is not as pronounced since the pions tend to decay earlier in the decay

pipe, making the shift towards higher Vz less pronounced.

The question now becomes why is there a change in the Vz distribution? Unfortunately, this is

a difficult question to answer. However, we do have some strong circumstantial evidence that the

cause is a change in horn focusing. First, a note about the changes in the Flugg horns. The extra

horn material added to Flugg is at the far end in z and at high r. This means that there is an

additional focused component that is going straighter but with a wider divergence. This additional

‘straightness’ might be the cause of the change in the Vz distribution. We also see some evidence

of the wider divergence. Figure F.12 shows a variable named ‘divx’ that is calculated by taking the

neutrino parent at its decay point and using its final momentum to project it back to what its x

coordinate would have been at z = 45 m. Both of these distributions do, indeed, show that Flugg

has a wider distribution. However, because of the way the variable is constructed, particles that

decay closer to the end of the decay pipe will tend to have larger values since they have to project

farther back and thus this variable does not necessarily tell us that the raw flux leaving the horns is

wider. It gives us the correlation, but it cannot demonstrate causation.

A second piece of circumstantial evidence comes from looking at the relative muon flux, sepa-

rated by charge, in the different beam configurations. You can see this plotted in Figure F.13 and

Figure F.14. For µ+’s, as the focused energy increases the Near Detector excess decreases until

there is actually a small deficit in the pseudo high-energy configuration. For the µ−’s, on the other

hand, there is no statistically-significant excess in any focused beam configuration.9 The fact that

changing the horn focusing does affect the flux of µ+’s but not the flux of µ−’s strongly suggests

(but cannot prove) that the horn focusing is the cause of the changes between Flugg and Gnumi. It

also cannot tell us what it is about the focusing that makes the difference.

We are limited by not having any information about the immediate muon parent and also by

only having information about particles that go on to produce neutrinos. In order to do conclusively

prove this hypothesis, information beyond what is stored in the flux files is required, both in Flugg

and in Gnumi. This includes more information about the muon parent or a dump of all particles

that pass through a plane in the simulation, regardless of whether or not they decay to neutrinos.

9However, there is a significant excess in the horn-off configurations that is not, at this time, understood.



186 Technical Aspects of Flugg

Near Detector Energy
0 5 10 15 20 25 300

50

100

150

(((Nimpwt)*(Nimpwt>0))*(Nwtnear))*((Ntype == 53)||(Ntype == 52))

Near Detector Energy
0 5 10 150

20

40

60

80

100

120

140
(((Nimpwt)*(Nimpwt>0))*(Nwtnear))*(ptype == 5 || ptype == 6)

Figure F.6: At left is the Near Detector νe and ν̄e energy spectrum. It shows a 14% overall increase compared
to Gnumi, concentrated at lower energies. At right is the Near Detector energy spectrum for all neutrino
types from µ± decay. Here there is a 16% increase which is relatively consistent for all energies.

Far Detector Energy
0 5 10 150

0.02

0.04

0.06

0.08

0.1

-310×(((Nimpwt)*(Nimpwt>0))*(Nwtfar))*(ptype == 5 || ptype == 6)

 Energyν
0 5 10 150

50

100

150

310×((Nimpwt)*(Nimpwt>0))*(ptype == 5 || ptype == 6)

Figure F.7: Both figures show the energy spectrum for neutrinos from µ± decay. At left is the Far Detector
spectrum, where Flugg shows an 8% increase relative to gnumi. At right is the non-detector (importance-
only) weighted muon flux. Here the total number of muons produced is identical to within 0.1%.
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Figure F.8: The Near Detector weighted Vz distribution for neutrinos from muon decay. We can see that
the 16% increase in flux is concentrated at higher Vz.
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Figure F.9: The importance (non-detector) weighted Vz distribution for neutrinos from muon decay. We
can see that the increase shown in Figure F.8 is actually a shift from lower to higher Vz with little change
in overall flux when not detector weighted. The increased overall flux comes because neutrinos produced at
higher Vz (closer to the Near Detector) have higher Near Detector weights (or equivalently, are more likely
to hit the Near Detector).
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Figure F.10: The Near Detector weighted Vz distribution for νµ’s. While the shift from low to high is still
present, the change in overall number of events is much smaller because the distribution is already shifted
heavily towards the front of the decay pipe.
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Figure F.11: The importance (non-detector) weighted Vz distribution for νµ’s.
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Figure F.12: Both of these plots show the divx variable – this is the projected x-position the neutrino parent
would have passed through at z = 45 m based on its final position and momentum. At left is the distribution
for pion parents and at right is the distribution for muons parents. The pion RMS is about 3% larger and
the muon RMS is about 8% larger. Unfortunately, because the flux files only contain parents that produce
neutrinos, these effects may be due to the correlation between this variable and the Vz distribution and
cannot demonstrate that Flugg has a wider flux leaving the horns.

Figure F.13: The ratio of integrated µ+ Near Detector fluxes from Flugg and Gnumi in a range of beam
configurations. The focused energy increases from left to right.
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Figure F.14: The ratio of integrated µ− Near Detector fluxes from Flugg and Gnumi in a range of beam
configurations. The focused energy increases from left to right.
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F.5.4 Low Angle Scatters

The divergence plots developed to study the νe flux show another interesting effect. While the effect

pertains to too small a number of events to explain significant spectral differences, it is representative

of the types of underlying differences between the behavior two simulations (this one just happened

to get tracked down). Using the divr variable (the extrapolated radial position at z = 45 m, we find

that about 5% of the events with parents produced in the target and neutrino vertices in the decay

pipe have ‘impossible’ values. That is, they have values of divr > 100 cm, which is the radius of the

decay pipe walls. If we plot the divx and divy for parents that decay in the decay pipe, this class

of events can be seen as a halo surrounding the decay pipe entrance (see Figure F.15). Since these

particles were produced in the target, they must have passed through the central window. Since the

halo begins at the radius of the decay pipe, these events seem to be from glancing scatters off the

walls. What makes these events interesting is that there are twice as many of them in Flugg and

they tend to produce neutrinos farther down in the decay pipe, indicating perhaps smaller scattering

angles.
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Figure F.15: At left the divy vs. divx positions of parents produced in the target that decay in the decay
pipe is shown. The rectangle in the center is the space in which the flux can pass into the decay pipe, defined
by the chase shielding. The halo surrounding this window must come from particles deflecting off the decay
pipe walls since the halo begins at r = 100 cm, which is the radius of the decay pipe. At right are the
Vz distributions for events that appear to scatter off the walls of the decay pipe. Flugg has twice as many
events and they are shifted to larger Vz values.
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F.5.5 Multiple Scattering in the Chase

Another Flugg-Gnumi difference that was found was in the amount of multiple-scattering in the air

in the Chase. Specifically, there appears to be none in Gnumi and there is an appreciable amount

in Flugg. The effect was discovered looking at a special run with monoenergetic pions traveling

directly down the center of the horns. By looking at the neutrino production vertices, we can map

out the path taken by these pions. So, by looking at Vx at a slice in z, we can compare the amount

of scattering we see with the amount that is calculated for pions traveling through air. This is shown

for z = 45 m in Figure F.16. The calculated 1σ width due to multiple is 1.35 cm and is marked with

dashed lines on the plot. You can see that this agrees well with the distribution produced by Flugg.

Further investigation revealed that the Gnumi simulation was originally written with vacuum in

the chase. When the simulation was updated to have an air filled chase, the step size in the region

was never updated accordingly. So, in Gnumi these particles were taking steps so large that they

had no chance for scattering to occur. Again, this difference is too small to affect the flux in a

significant way; however, its resolution gives confidence in the Flugg simulation.

Figure F.16: This figure comes from a special run with monoenergetic, neck-to-neck pions. We use the
neutrino vertices to show the path of these pions. The figure shows Vx distribution at a slice at z = 45 m.
You can see that while Gnumi (in black) shows no evidence of scattering, the Flugg distribution matches
the calculated 1σ scattering width (1.35 cm - marked with dashed lines) quite well.
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Appendix G

The Water-Scintillator Detector

As neutrino and comsic ray physics have progressed, ever larger detectors have been required to make

new discoveries. Future neutrino experiments being considered, such as LBNE [157], will require

near megaton-scale detectors that are sensitive to low-energy neutrino interactions. Cherenkov light

detectors, such as the detector used in Super-Kamiokande [52], use water as the target medium.

Water is inexpensive by weight, but the amount of Cherenkov light released in neutrino interactions

requires large, expensive photodetectors to collect. It is also not sensitive to particularly low energies,

with a threshold of approximately 8 MeV. Scintillator produces significantly more light (requiring

less expensive photodetectors) and has a lower threshold, but requires media such as plastic (MINOS

[131]) or mineral oil (NOνA [75]) that are expensive per unit mass. The ideal solution would be a

water-soluble scintillator, but unfortunately no practical scintillators of this type are known.

The Caltech neutrino group has been exploring alternatives that could take advantage of the

light-producing properties of scintillator while keeping a low cost-per-weight. The basic concept

is to use water as the bulk target, but to fill a small fraction of the detector volume with plastic

scintillator that will react to the particles produced by interactions with the water. As a prototype,

Figure G.1: The water-scintillator detector prototype at Caltech. The green strands are WLS fiber for
readout and the strands extending down from the metal cross-pieces (visible only on the right) are extruded
plastic scintillator.
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Figure G.2: The water-scintillator detector was read out in eight geometrical regions onto eight phototubes,
arranged in light-tight boxes near the detector. The detector was triggered by muon paddles placed above
and below the detector.

a 1 m3 cube steel tank was fabricated, pictured in Figure G.1. The walls of the tank were coated in

highly-reflective titanium-dioxide paint and the volume was strung with 1.5 mm extruded strands of

plastic scintillator before being filled with water. The scintillator strands are visible reaching down

into the tank in Figure G.1. The detector was read out using wavelength-shifting (WLS) fiber to

transport light from different regions of the detector to phototubes. The WLS fibers are the green

strands in Figure G.1, and the phototubes are housed in the metal boxes sitting beside the detector

in Figure G.2. Each of the eight phototubes receive light from a particular geometrical region of

the detector, pictured in Figure G.2. The detector is triggered on cosmic ray muons using plastic

scintillator paddles placed above and below the detector in an overlapping pattern, also shown in

Figure G.2. The signature trigger of a through-going muon is the coincidence of two hits above and

two hits below the same quadrant of the detector from the paddles.

Figure G.3 shows histograms of the responses in each of the geometrical channels when the

detector was triggered above the channel 5 region. The regions closest to the triggered paddles show

the largest signals, with smaller signals in more distant regions. Thus, some track localization is

possible in this detector arrangement – we estimate on the order of tens of centimeters. Figure G.4

gives the summed signal across all channels for through-going muon triggers, showing an average

total response of 30 PE. A typical cosmic-ray muon will deposit 150 MeV of energy while traversing

1 m of water [35]. This gives a detector response of 1 PE per 5 MeV of deposited energy, which is

similar to the light levels achieved in MINOS.

The light levels and materials costs of this detector technology are promising, but further work is

required, particularly on cost-effective construction methods, before it is shown to be a viable choice

for a megaton scale detector.
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Figure G.3: Histograms of the detector response in each of the eight channels when there was a trigger over
the channel 5 region. The closest regions show large signals while more distant ones show only small signals.

Figure G.4: The summed response of all channels to a through-going muon trigger. Approximately 30 PE
equivalent is observed in response to the typical energy depositions of 150 MeV.
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